Abstract

The positions of the front and rear surfaces of a silicon dioxide film with 4 μm thickness is measured with a novel and simple method in which both amplitude and phase of a sinusoidal wave signal corresponding to one optical path difference of a reflecting surface is utilized in a linear wavenumber-scanning interferometer. For this utilization, the scanning width and the position of the reference mirror are adjusted exactly to distinguish the two sinusoidal waves corresponding to the two surfaces of the film. The scanning width of the wavenumber and wavelength of the light source are 0.326×103nm1 and 140 nm, respectively.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. de Groot and L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white light interferograms,” Opt. Lett. 18, 1462–1464 (1993).
    [CrossRef]
  2. S. W. Kim and G. H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38, 5968–5937 (1999).
    [CrossRef]
  3. U. Schnell, R. Dandliker, and S. Gray, “Dispersive white-light interferometry for absolute distance measurement with dielectric multilayer systems on the target,” Opt. Lett. 21, 528–530 (1996).
    [CrossRef]
  4. Y. S. Ghim and S. W. Kim, “Thin-film thickness profile and its refractive index measurements by dispersive white-light interferometry,” Opt. Express 14, 11885–11891 (2006).
    [CrossRef]
  5. D. Kim, S. Kim, H. J. Kong, and Y. Lee, “Measurement of the thickness profile of a transparent thin-film deposited upon a pattern structure with an acousto-optic tunable filter,” Opt. Lett. 27, 1893–1895 (2002).
    [CrossRef]
  6. D. Kim and S. Kim, “Direct spectral phase function calculation for dispersive interferometric thickness profilometry,” Opt. Express 12, 5117–5124 (2004).
    [CrossRef]
  7. H. Akiyama, O. Sasaki, and T. Suzuki, “Sinusoidal wavelength-scanning interferometer using an acousto-optic tunable filter for measurement of thickness and surface profile of a thin film,” Opt. Express 13, 10066–10074 (2005).
    [CrossRef]
  8. D. Kim, S. Kim, H. J. Kong, Y. Lee, and Y. K. Kwak, “Fast thickness profile measurement using a peak detection method based on an acousto-optic tunable filter,” Meas. Sci. Technol. 13, L1–L5 (2002).
    [CrossRef]
  9. J. W. You, S. Kim, and D. Kim, “High speed volumetric thickness profile measurement based on full-field wavelength scanning interferometer,” Opt. Express 16, 21022–21031 (2008).
    [CrossRef]
  10. J. W. You, D. Kim, S. Y. Ryu, and S. Kim, “Simultaneous measurement method of total and self-interference for the volumetric thickness profilometer,” Opt. Express 17, 1352–1360 (2009).
    [CrossRef]

2009

2008

2006

2005

2004

2002

D. Kim, S. Kim, H. J. Kong, Y. Lee, and Y. K. Kwak, “Fast thickness profile measurement using a peak detection method based on an acousto-optic tunable filter,” Meas. Sci. Technol. 13, L1–L5 (2002).
[CrossRef]

D. Kim, S. Kim, H. J. Kong, and Y. Lee, “Measurement of the thickness profile of a transparent thin-film deposited upon a pattern structure with an acousto-optic tunable filter,” Opt. Lett. 27, 1893–1895 (2002).
[CrossRef]

1999

1996

1993

Akiyama, H.

Dandliker, R.

de Groot, P.

Deck, L.

Ghim, Y. S.

Gray, S.

Kim, D.

Kim, G. H.

Kim, S.

Kim, S. W.

Kong, H. J.

D. Kim, S. Kim, H. J. Kong, and Y. Lee, “Measurement of the thickness profile of a transparent thin-film deposited upon a pattern structure with an acousto-optic tunable filter,” Opt. Lett. 27, 1893–1895 (2002).
[CrossRef]

D. Kim, S. Kim, H. J. Kong, Y. Lee, and Y. K. Kwak, “Fast thickness profile measurement using a peak detection method based on an acousto-optic tunable filter,” Meas. Sci. Technol. 13, L1–L5 (2002).
[CrossRef]

Kwak, Y. K.

D. Kim, S. Kim, H. J. Kong, Y. Lee, and Y. K. Kwak, “Fast thickness profile measurement using a peak detection method based on an acousto-optic tunable filter,” Meas. Sci. Technol. 13, L1–L5 (2002).
[CrossRef]

Lee, Y.

D. Kim, S. Kim, H. J. Kong, Y. Lee, and Y. K. Kwak, “Fast thickness profile measurement using a peak detection method based on an acousto-optic tunable filter,” Meas. Sci. Technol. 13, L1–L5 (2002).
[CrossRef]

D. Kim, S. Kim, H. J. Kong, and Y. Lee, “Measurement of the thickness profile of a transparent thin-film deposited upon a pattern structure with an acousto-optic tunable filter,” Opt. Lett. 27, 1893–1895 (2002).
[CrossRef]

Ryu, S. Y.

Sasaki, O.

Schnell, U.

Suzuki, T.

You, J. W.

Appl. Opt.

Meas. Sci. Technol.

D. Kim, S. Kim, H. J. Kong, Y. Lee, and Y. K. Kwak, “Fast thickness profile measurement using a peak detection method based on an acousto-optic tunable filter,” Meas. Sci. Technol. 13, L1–L5 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Configuration of a wavenumber-scanning interferometer.

Fig. 2.
Fig. 2.

Wavenumber scanning σ(t), interference signal S(t), and phase α(t) of S(t).

Fig. 3.
Fig. 3.

Multiple reflections by a silicon dioxide film and position of the reference plane.

Fig. 4.
Fig. 4.

(a) Detected intensity SD(t) of the interference signal; (b) intensity IC(t) of the light source; and (c) interference signal intensity S(t) of SD(t)/IC(t).

Fig. 5.
Fig. 5.

Amplitude distributions of frequency components calculated with FFT for three interference signals of (a) Ns=125, (b) Ns=126, and (c) Ns=127.

Fig. 6.
Fig. 6.

Thickness distribution measured without the reference wave.

Fig. 7.
Fig. 7.

Interference signal and its amplitude distribution of frequency components detected before fine position adjustment of the reference mirror.

Fig. 8.
Fig. 8.

Interference signal and its amplitude distribution of frequency components detected after fine position adjustment of the reference mirror.

Fig. 9.
Fig. 9.

Measured position distributions of (a) front surface, (b) rear surface, and (c) thickness distribution of LT=LRLF.

Tables (1)

Tables Icon

Table 1. Measured Values on the Three Measurement Points on the CCD

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S(t)=cos[2πσ(t)L].
S(t)=cos[2πpfbt+α0],
2πBσL=2πp.
α0=2πσ0L.
Lσ=p/Bσ=pLb,
Lα=α0/2πσ0.
L=mλ0+Lα,
mc=(LσLα)/λ0.
Δp=ΔL/Lb=ΔΦ/2π.
S(t)=cos[2π(p+Δp)fbt+α0],
F(pfb+nfb)=T(1)n[sin(Δpπ)/(Δpn)π]exp[j(Δpn)π+α0],

Metrics