Abstract

The low-transmittance elements required for a high power laser facility have stringent specifications about transmittance. To validate optic performance against specifications, a metrology system for transmittance is proposed. The system is composed of a laser source, an integrating sphere, a power meter, and four uncoated wedged glasses. A relative measurement method is adopted, which is that the surface reflectivity of uncoated glass is used as the reference to compare with the sample’s transmittance. The systematic feature is that uncoated wedged glasses are applied to split and reflect beams, which not only avoid coating errors, but also make the two beam powers attenuate properly. Measurement results for a sample’s transmittance are presented. Experiment and analysis show that the relative standard uncertainty (σT/T) of measurement is 0.424%. This system is available for large-aperture elements.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Peng, X. M. Zhang, and X. F. Wei, “Status of the SG-III solid state laser project,” Proc. SPIE 3492, 25–33 (1999).
    [CrossRef]
  2. X. Zhang, W. Zheng, and X. Wei, “Preliminary experimental results of shenguang III technical integration experiment line,” Proc. SPIE 5627, 6–12 (2005).
    [CrossRef]
  3. G. H. Miller, E. I. Moses, and C. R. Wuest, “The national ignition facility,” Opt. Eng. 43, 2841–2853 (2004).
    [CrossRef]
  4. Y. Zhang, X. Wen, Z. D. Xu, and D. Zhu, “The accuracy of a commercial spectrophotometer with single integrating sphere for measuring optical properties of turbid sample,” Proc. SPIE 7562, 1–9 (2010).
    [CrossRef]
  5. D. D. Sell, “A sensitive spectrophotometer for optical reflectance and transmittance measurements,” Appl. Opt. 9, 1926–1930 (1970).
  6. K. D. Mielenz, K. L. Eckerle, R. P. Madden, and J. Reader, “New reference spectrophotometer,” Appl. Opt. 12, 1630–1641 (1973).
    [CrossRef]
  7. H. S. Liu, D. D. Liu, Y. Q. Ji, and Z. S. Wang, “Optimizing operating parameters of spectrophotometer for testing transmission spectrum of optical substrate,” Proc. SPIE 7656, 765604 (2010).
    [CrossRef]
  8. J. Miao, P. Q. Yang, B. Q. Zhou, and J. Q. Zhu, “Two-beam reflectance and transmittance measurement for “Shengguang-II” facility,” Proc. SPIE 7656, 76564K(2010).
  9. J. Liu, H. F. Li, X. Liu, and P. F. Gu, “Spectrophotometer for measuring spectral transmittance and reflectance of large aperture optical element,” Proc. SPIE 5638, 229–236 (2005).
    [CrossRef]
  10. J. C. Zwinkels and D. S. Gignac, “Design and testing of a new high-accuracy ultraviolet-visible-near-infrared spectrophotometer,” Appl. Opt. 31, 1557–1567 (1992).
    [CrossRef]
  11. C. J. Stolz, M. Runkel, M. S. McBurney, R. Cheek, and J. A. Menapace, “Metrology of mirrors for the national ignition facility,” Proc. SPIE 5341, 114–120 (2004).
    [CrossRef]
  12. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), p. 174.
  13. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), p. 200.
  14. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297 (U.S. GPO, Washington, 1994).
  15. H. Ma and J. B. Wang, Error Theory and Apparatus Accuracy (The Publishing House of Defense Industry, Bei Jing, 2007), p. 40.
  16. G. A. Deng, Z. G. Cai, Y. H. Zhang, Y. K. Xu, S. Z. Wu, and J. Y. Zhou, “Refraction index measurement of transparent materials by using diffraction grating and CCD,” Acta Optica Sinica 24, 99–103 (2003).

2010

Y. Zhang, X. Wen, Z. D. Xu, and D. Zhu, “The accuracy of a commercial spectrophotometer with single integrating sphere for measuring optical properties of turbid sample,” Proc. SPIE 7562, 1–9 (2010).
[CrossRef]

H. S. Liu, D. D. Liu, Y. Q. Ji, and Z. S. Wang, “Optimizing operating parameters of spectrophotometer for testing transmission spectrum of optical substrate,” Proc. SPIE 7656, 765604 (2010).
[CrossRef]

J. Miao, P. Q. Yang, B. Q. Zhou, and J. Q. Zhu, “Two-beam reflectance and transmittance measurement for “Shengguang-II” facility,” Proc. SPIE 7656, 76564K(2010).

2005

J. Liu, H. F. Li, X. Liu, and P. F. Gu, “Spectrophotometer for measuring spectral transmittance and reflectance of large aperture optical element,” Proc. SPIE 5638, 229–236 (2005).
[CrossRef]

X. Zhang, W. Zheng, and X. Wei, “Preliminary experimental results of shenguang III technical integration experiment line,” Proc. SPIE 5627, 6–12 (2005).
[CrossRef]

2004

G. H. Miller, E. I. Moses, and C. R. Wuest, “The national ignition facility,” Opt. Eng. 43, 2841–2853 (2004).
[CrossRef]

C. J. Stolz, M. Runkel, M. S. McBurney, R. Cheek, and J. A. Menapace, “Metrology of mirrors for the national ignition facility,” Proc. SPIE 5341, 114–120 (2004).
[CrossRef]

2003

G. A. Deng, Z. G. Cai, Y. H. Zhang, Y. K. Xu, S. Z. Wu, and J. Y. Zhou, “Refraction index measurement of transparent materials by using diffraction grating and CCD,” Acta Optica Sinica 24, 99–103 (2003).

1999

H. S. Peng, X. M. Zhang, and X. F. Wei, “Status of the SG-III solid state laser project,” Proc. SPIE 3492, 25–33 (1999).
[CrossRef]

1992

1973

1970

Cai, Z. G.

G. A. Deng, Z. G. Cai, Y. H. Zhang, Y. K. Xu, S. Z. Wu, and J. Y. Zhou, “Refraction index measurement of transparent materials by using diffraction grating and CCD,” Acta Optica Sinica 24, 99–103 (2003).

Cheek, R.

C. J. Stolz, M. Runkel, M. S. McBurney, R. Cheek, and J. A. Menapace, “Metrology of mirrors for the national ignition facility,” Proc. SPIE 5341, 114–120 (2004).
[CrossRef]

Deng, G. A.

G. A. Deng, Z. G. Cai, Y. H. Zhang, Y. K. Xu, S. Z. Wu, and J. Y. Zhou, “Refraction index measurement of transparent materials by using diffraction grating and CCD,” Acta Optica Sinica 24, 99–103 (2003).

Eckerle, K. L.

Gignac, D. S.

Gu, P. F.

J. Liu, H. F. Li, X. Liu, and P. F. Gu, “Spectrophotometer for measuring spectral transmittance and reflectance of large aperture optical element,” Proc. SPIE 5638, 229–236 (2005).
[CrossRef]

Ji, Y. Q.

H. S. Liu, D. D. Liu, Y. Q. Ji, and Z. S. Wang, “Optimizing operating parameters of spectrophotometer for testing transmission spectrum of optical substrate,” Proc. SPIE 7656, 765604 (2010).
[CrossRef]

Kuyatt, C. E.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297 (U.S. GPO, Washington, 1994).

Li, H. F.

J. Liu, H. F. Li, X. Liu, and P. F. Gu, “Spectrophotometer for measuring spectral transmittance and reflectance of large aperture optical element,” Proc. SPIE 5638, 229–236 (2005).
[CrossRef]

Liu, D. D.

H. S. Liu, D. D. Liu, Y. Q. Ji, and Z. S. Wang, “Optimizing operating parameters of spectrophotometer for testing transmission spectrum of optical substrate,” Proc. SPIE 7656, 765604 (2010).
[CrossRef]

Liu, H. S.

H. S. Liu, D. D. Liu, Y. Q. Ji, and Z. S. Wang, “Optimizing operating parameters of spectrophotometer for testing transmission spectrum of optical substrate,” Proc. SPIE 7656, 765604 (2010).
[CrossRef]

Liu, J.

J. Liu, H. F. Li, X. Liu, and P. F. Gu, “Spectrophotometer for measuring spectral transmittance and reflectance of large aperture optical element,” Proc. SPIE 5638, 229–236 (2005).
[CrossRef]

Liu, X.

J. Liu, H. F. Li, X. Liu, and P. F. Gu, “Spectrophotometer for measuring spectral transmittance and reflectance of large aperture optical element,” Proc. SPIE 5638, 229–236 (2005).
[CrossRef]

Ma, H.

H. Ma and J. B. Wang, Error Theory and Apparatus Accuracy (The Publishing House of Defense Industry, Bei Jing, 2007), p. 40.

Madden, R. P.

McBurney, M. S.

C. J. Stolz, M. Runkel, M. S. McBurney, R. Cheek, and J. A. Menapace, “Metrology of mirrors for the national ignition facility,” Proc. SPIE 5341, 114–120 (2004).
[CrossRef]

Menapace, J. A.

C. J. Stolz, M. Runkel, M. S. McBurney, R. Cheek, and J. A. Menapace, “Metrology of mirrors for the national ignition facility,” Proc. SPIE 5341, 114–120 (2004).
[CrossRef]

Miao, J.

J. Miao, P. Q. Yang, B. Q. Zhou, and J. Q. Zhu, “Two-beam reflectance and transmittance measurement for “Shengguang-II” facility,” Proc. SPIE 7656, 76564K(2010).

Mielenz, K. D.

Miller, G. H.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The national ignition facility,” Opt. Eng. 43, 2841–2853 (2004).
[CrossRef]

Moses, E. I.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The national ignition facility,” Opt. Eng. 43, 2841–2853 (2004).
[CrossRef]

Peng, H. S.

H. S. Peng, X. M. Zhang, and X. F. Wei, “Status of the SG-III solid state laser project,” Proc. SPIE 3492, 25–33 (1999).
[CrossRef]

Reader, J.

Runkel, M.

C. J. Stolz, M. Runkel, M. S. McBurney, R. Cheek, and J. A. Menapace, “Metrology of mirrors for the national ignition facility,” Proc. SPIE 5341, 114–120 (2004).
[CrossRef]

Sell, D. D.

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), p. 174.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), p. 200.

Stolz, C. J.

C. J. Stolz, M. Runkel, M. S. McBurney, R. Cheek, and J. A. Menapace, “Metrology of mirrors for the national ignition facility,” Proc. SPIE 5341, 114–120 (2004).
[CrossRef]

Taylor, B. N.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297 (U.S. GPO, Washington, 1994).

Wang, J. B.

H. Ma and J. B. Wang, Error Theory and Apparatus Accuracy (The Publishing House of Defense Industry, Bei Jing, 2007), p. 40.

Wang, Z. S.

H. S. Liu, D. D. Liu, Y. Q. Ji, and Z. S. Wang, “Optimizing operating parameters of spectrophotometer for testing transmission spectrum of optical substrate,” Proc. SPIE 7656, 765604 (2010).
[CrossRef]

Wei, X.

X. Zhang, W. Zheng, and X. Wei, “Preliminary experimental results of shenguang III technical integration experiment line,” Proc. SPIE 5627, 6–12 (2005).
[CrossRef]

Wei, X. F.

H. S. Peng, X. M. Zhang, and X. F. Wei, “Status of the SG-III solid state laser project,” Proc. SPIE 3492, 25–33 (1999).
[CrossRef]

Wen, X.

Y. Zhang, X. Wen, Z. D. Xu, and D. Zhu, “The accuracy of a commercial spectrophotometer with single integrating sphere for measuring optical properties of turbid sample,” Proc. SPIE 7562, 1–9 (2010).
[CrossRef]

Wu, S. Z.

G. A. Deng, Z. G. Cai, Y. H. Zhang, Y. K. Xu, S. Z. Wu, and J. Y. Zhou, “Refraction index measurement of transparent materials by using diffraction grating and CCD,” Acta Optica Sinica 24, 99–103 (2003).

Wuest, C. R.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The national ignition facility,” Opt. Eng. 43, 2841–2853 (2004).
[CrossRef]

Xu, Y. K.

G. A. Deng, Z. G. Cai, Y. H. Zhang, Y. K. Xu, S. Z. Wu, and J. Y. Zhou, “Refraction index measurement of transparent materials by using diffraction grating and CCD,” Acta Optica Sinica 24, 99–103 (2003).

Xu, Z. D.

Y. Zhang, X. Wen, Z. D. Xu, and D. Zhu, “The accuracy of a commercial spectrophotometer with single integrating sphere for measuring optical properties of turbid sample,” Proc. SPIE 7562, 1–9 (2010).
[CrossRef]

Yang, P. Q.

J. Miao, P. Q. Yang, B. Q. Zhou, and J. Q. Zhu, “Two-beam reflectance and transmittance measurement for “Shengguang-II” facility,” Proc. SPIE 7656, 76564K(2010).

Zhang, X.

X. Zhang, W. Zheng, and X. Wei, “Preliminary experimental results of shenguang III technical integration experiment line,” Proc. SPIE 5627, 6–12 (2005).
[CrossRef]

Zhang, X. M.

H. S. Peng, X. M. Zhang, and X. F. Wei, “Status of the SG-III solid state laser project,” Proc. SPIE 3492, 25–33 (1999).
[CrossRef]

Zhang, Y.

Y. Zhang, X. Wen, Z. D. Xu, and D. Zhu, “The accuracy of a commercial spectrophotometer with single integrating sphere for measuring optical properties of turbid sample,” Proc. SPIE 7562, 1–9 (2010).
[CrossRef]

Zhang, Y. H.

G. A. Deng, Z. G. Cai, Y. H. Zhang, Y. K. Xu, S. Z. Wu, and J. Y. Zhou, “Refraction index measurement of transparent materials by using diffraction grating and CCD,” Acta Optica Sinica 24, 99–103 (2003).

Zheng, W.

X. Zhang, W. Zheng, and X. Wei, “Preliminary experimental results of shenguang III technical integration experiment line,” Proc. SPIE 5627, 6–12 (2005).
[CrossRef]

Zhou, B. Q.

J. Miao, P. Q. Yang, B. Q. Zhou, and J. Q. Zhu, “Two-beam reflectance and transmittance measurement for “Shengguang-II” facility,” Proc. SPIE 7656, 76564K(2010).

Zhou, J. Y.

G. A. Deng, Z. G. Cai, Y. H. Zhang, Y. K. Xu, S. Z. Wu, and J. Y. Zhou, “Refraction index measurement of transparent materials by using diffraction grating and CCD,” Acta Optica Sinica 24, 99–103 (2003).

Zhu, D.

Y. Zhang, X. Wen, Z. D. Xu, and D. Zhu, “The accuracy of a commercial spectrophotometer with single integrating sphere for measuring optical properties of turbid sample,” Proc. SPIE 7562, 1–9 (2010).
[CrossRef]

Zhu, J. Q.

J. Miao, P. Q. Yang, B. Q. Zhou, and J. Q. Zhu, “Two-beam reflectance and transmittance measurement for “Shengguang-II” facility,” Proc. SPIE 7656, 76564K(2010).

Zwinkels, J. C.

Acta Optica Sinica

G. A. Deng, Z. G. Cai, Y. H. Zhang, Y. K. Xu, S. Z. Wu, and J. Y. Zhou, “Refraction index measurement of transparent materials by using diffraction grating and CCD,” Acta Optica Sinica 24, 99–103 (2003).

Appl. Opt.

Opt. Eng.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The national ignition facility,” Opt. Eng. 43, 2841–2853 (2004).
[CrossRef]

Proc. SPIE

Y. Zhang, X. Wen, Z. D. Xu, and D. Zhu, “The accuracy of a commercial spectrophotometer with single integrating sphere for measuring optical properties of turbid sample,” Proc. SPIE 7562, 1–9 (2010).
[CrossRef]

H. S. Peng, X. M. Zhang, and X. F. Wei, “Status of the SG-III solid state laser project,” Proc. SPIE 3492, 25–33 (1999).
[CrossRef]

X. Zhang, W. Zheng, and X. Wei, “Preliminary experimental results of shenguang III technical integration experiment line,” Proc. SPIE 5627, 6–12 (2005).
[CrossRef]

H. S. Liu, D. D. Liu, Y. Q. Ji, and Z. S. Wang, “Optimizing operating parameters of spectrophotometer for testing transmission spectrum of optical substrate,” Proc. SPIE 7656, 765604 (2010).
[CrossRef]

J. Miao, P. Q. Yang, B. Q. Zhou, and J. Q. Zhu, “Two-beam reflectance and transmittance measurement for “Shengguang-II” facility,” Proc. SPIE 7656, 76564K(2010).

J. Liu, H. F. Li, X. Liu, and P. F. Gu, “Spectrophotometer for measuring spectral transmittance and reflectance of large aperture optical element,” Proc. SPIE 5638, 229–236 (2005).
[CrossRef]

C. J. Stolz, M. Runkel, M. S. McBurney, R. Cheek, and J. A. Menapace, “Metrology of mirrors for the national ignition facility,” Proc. SPIE 5341, 114–120 (2004).
[CrossRef]

Other

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), p. 174.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), p. 200.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297 (U.S. GPO, Washington, 1994).

H. Ma and J. B. Wang, Error Theory and Apparatus Accuracy (The Publishing House of Defense Industry, Bei Jing, 2007), p. 40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Optical scheme for transmittance testing measurements. A: absorber; IS: integrating sphere; SD: signal detector; Mi (i=1, 2): material internal absorption; Rj (j=1,2,,6): surface reflections; N: power attenuation of integrating sphere; T: sample transmittance.

Fig. 2.
Fig. 2.

Values for the transmittance of the same point measured on two different days T¯=0.758%; σ=0.0041%.

Tables (3)

Tables Icon

Table 1. Transmittance of One Point Repeatedly Measured Resultsa

Tables Icon

Table 2. Transmittance for Six Different Pointsa

Tables Icon

Table 3. Influencing Factors and Their Contributions for (σT/T)2

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Pr=Pt1×R1×R2×(1R3)×M1×(1R4)×N,
Pm=Pt2×(1R1)×M2×(1R5)×T×R6×N.
T=Pt1×R1×R2×(1R3)×M1×(1R4)Pt2×(1R1)×M2×(1R5)×R6×PmPr.
Mi=eα×di.
Rj=sin2(θj1θj2)sin2(θj1+θj2).
Rj=tan2(θj1θj2)tan2(θj1+θj2).
T=Pm×R12Pr×R6.
(σTT)2=2×(σPPv)2+2×(α×σd1)2+2×(σPmPmv)2+2×1R1v+R1v2R1v2×(1R1v)2×(R1θ1|θ1=10°n=1.5385×σθ1)2+2×(11R4v)2×(R4θ4|θ4=3.52°n=1.5385×σθ4)2+(1R6v)2×(R6θ6|θ6=30.3°n=1.5385×σθ6)2+(2R1v×R1n|θ1=10°n=1.53851R6v×R6n|θ6=30.3°n=1.5385)2×σn2,
σTT=0.424%.

Metrics