Abstract

We demonstrate quasi-continuous wave supercontinuum generation in a single-mode high-nonlinear fiber (HNLF) in 1.55 μm band, which is pumped by the amplified passively Q-switched submicrosecond pulse. The pump wavelength is in the normal dispersion region of HNLF and near to the zero-dispersion wavelength. The broad SC spectral range from 1200 to 2260 nm is obtained with the low pump peak power of 17.8 W. The 20 dB bandwidth of 922 nm from 1285 to 2207 nm is obtained with the assumption that the peak near 1560 nm is filtered. The spectrum density for the 20 dB bandwidth is from 27.5 to 7.5dbm/nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  2. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009).
    [CrossRef]
  3. G. A. Nowak, J. Kim, and M. N. Islam, “Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber,” Appl. Opt. 38, 7364–7369 (1999).
    [CrossRef]
  4. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef]
  5. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers,” J. Lightwave Technol. 27, 2095–2099 (2009).
    [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air—silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  7. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568–3573 (2003).
    [CrossRef]
  8. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004).
    [CrossRef]
  9. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
    [CrossRef]
  10. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
    [CrossRef]
  11. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
    [CrossRef]
  12. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
    [CrossRef]
  13. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633(2009).
    [CrossRef]
  14. S. Coen, Alvin Hing Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
    [CrossRef]
  15. J. Cascante-Vindas, A. Díez, J. L. Cruz, and M. V. Andrés, “White light supercontinuum generation in a Y shaped microstructured tapered fiber pumped at 1064 nm,” Opt. Express 18, 14535–14540 (2010).
    [CrossRef]
  16. J. Cascante-Vindas, S. Torres-Peiró, A. Diez, and M. V. Andrés, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98, 371–176 (2010).
    [CrossRef]
  17. G. E. Town, T. Funaba, T. Ryan, and K. Lyytikainen, “Optical supercontinuum generation from nanosecond pump pulses in an irregularly microstructured air-silica optical fiber,” Appl. Phys. B 77, 235–238 (2003).
    [CrossRef]
  18. S. L. Zhu, C. X. Gao, H. D. He, L. Feng, and Z. Y. Cao, “All fiber supercontinuum light source using photonic crystal fibers pumped by nanosecond fiber laser pulses,” Laser Phys. 21, 1629–1632 (2011).
    [CrossRef]
  19. A. Boucon, T. Sylvestre, K. P. Huy, J. C. Beugnot, G. Mélin, H. Maillotte, and J. M. Dudley, “Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber,” Opt. Commun. 284, 467–470 (2011).
    [CrossRef]
  20. A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
    [CrossRef]
  21. J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers, J. Dudley and R. Taylor, eds. (Cambridge University, 2010), pp. 142–177.
  22. A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92, 141103 (2008).
    [CrossRef]
  23. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011).
    [CrossRef]
  24. S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
    [CrossRef]

2011 (3)

S. L. Zhu, C. X. Gao, H. D. He, L. Feng, and Z. Y. Cao, “All fiber supercontinuum light source using photonic crystal fibers pumped by nanosecond fiber laser pulses,” Laser Phys. 21, 1629–1632 (2011).
[CrossRef]

A. Boucon, T. Sylvestre, K. P. Huy, J. C. Beugnot, G. Mélin, H. Maillotte, and J. M. Dudley, “Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber,” Opt. Commun. 284, 467–470 (2011).
[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011).
[CrossRef]

2010 (4)

2009 (5)

2008 (2)

A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
[CrossRef]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2004 (1)

2003 (3)

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568–3573 (2003).
[CrossRef]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

G. E. Town, T. Funaba, T. Ryan, and K. Lyytikainen, “Optical supercontinuum generation from nanosecond pump pulses in an irregularly microstructured air-silica optical fiber,” Appl. Phys. B 77, 235–238 (2003).
[CrossRef]

2002 (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

Abeeluck, A. K.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Alasia, D.

A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
[CrossRef]

Andrés, M. V.

J. Cascante-Vindas, S. Torres-Peiró, A. Diez, and M. V. Andrés, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98, 371–176 (2010).
[CrossRef]

J. Cascante-Vindas, A. Díez, J. L. Cruz, and M. V. Andrés, “White light supercontinuum generation in a Y shaped microstructured tapered fiber pumped at 1064 nm,” Opt. Express 18, 14535–14540 (2010).
[CrossRef]

Asimakis, S.

Bang, O.

Beugnot, J. C.

A. Boucon, T. Sylvestre, K. P. Huy, J. C. Beugnot, G. Mélin, H. Maillotte, and J. M. Dudley, “Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber,” Opt. Commun. 284, 467–470 (2011).
[CrossRef]

A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
[CrossRef]

Bigot, L.

Boucon, A.

A. Boucon, T. Sylvestre, K. P. Huy, J. C. Beugnot, G. Mélin, H. Maillotte, and J. M. Dudley, “Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber,” Opt. Commun. 284, 467–470 (2011).
[CrossRef]

A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
[CrossRef]

Bouwmans, G.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633(2009).
[CrossRef]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

Brilland, L.

Cao, Z. Y.

S. L. Zhu, C. X. Gao, H. D. He, L. Feng, and Z. Y. Cao, “All fiber supercontinuum light source using photonic crystal fibers pumped by nanosecond fiber laser pulses,” Laser Phys. 21, 1629–1632 (2011).
[CrossRef]

Cascante-Vindas, J.

J. Cascante-Vindas, S. Torres-Peiró, A. Diez, and M. V. Andrés, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98, 371–176 (2010).
[CrossRef]

J. Cascante-Vindas, A. Díez, J. L. Cruz, and M. V. Andrés, “White light supercontinuum generation in a Y shaped microstructured tapered fiber pumped at 1064 nm,” Opt. Express 18, 14535–14540 (2010).
[CrossRef]

Chau, Alvin Hing Lun

Chaudhari, C.

Coen, S.

Cruz, J. L.

Désévédavy, F.

Diez, A.

J. Cascante-Vindas, S. Torres-Peiró, A. Diez, and M. V. Andrés, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98, 371–176 (2010).
[CrossRef]

Díez, A.

Dudley, J. M.

A. Boucon, T. Sylvestre, K. P. Huy, J. C. Beugnot, G. Mélin, H. Maillotte, and J. M. Dudley, “Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber,” Opt. Commun. 284, 467–470 (2011).
[CrossRef]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009).
[CrossRef]

A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

El-Amraoui, M.

Fatome, J.

Feng, L.

S. L. Zhu, C. X. Gao, H. D. He, L. Feng, and Z. Y. Cao, “All fiber supercontinuum light source using photonic crystal fibers pumped by nanosecond fiber laser pulses,” Laser Phys. 21, 1629–1632 (2011).
[CrossRef]

Finazzi, V.

Fleureau, A.

A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
[CrossRef]

Fortier, C.

Frampton, K.

Funaba, T.

G. E. Town, T. Funaba, T. Ryan, and K. Lyytikainen, “Optical supercontinuum generation from nanosecond pump pulses in an irregularly microstructured air-silica optical fiber,” Appl. Phys. B 77, 235–238 (2003).
[CrossRef]

Gadret, G.

Gao, C. X.

S. L. Zhu, C. X. Gao, H. D. He, L. Feng, and Z. Y. Cao, “All fiber supercontinuum light source using photonic crystal fibers pumped by nanosecond fiber laser pulses,” Laser Phys. 21, 1629–1632 (2011).
[CrossRef]

Gao, W.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Hansen, K. P.

Harvey, J. D.

He, H. D.

S. L. Zhu, C. X. Gao, H. D. He, L. Feng, and Z. Y. Cao, “All fiber supercontinuum light source using photonic crystal fibers pumped by nanosecond fiber laser pulses,” Laser Phys. 21, 1629–1632 (2011).
[CrossRef]

Headley, C.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Huy, K. P.

A. Boucon, T. Sylvestre, K. P. Huy, J. C. Beugnot, G. Mélin, H. Maillotte, and J. M. Dudley, “Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber,” Opt. Commun. 284, 467–470 (2011).
[CrossRef]

Islam, M. N.

Jørgensen, C. G.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Jules, J. C.

Kim, J.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

S. Coen, Alvin Hing Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

Kobtsev, S. M.

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
[CrossRef]

Koizumi, F.

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Kudlinski, A.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633(2009).
[CrossRef]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

Kukarin, S. V.

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
[CrossRef]

Larsen, C.

Le Rouge, A.

Lempereur, S.

A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
[CrossRef]

Leonhardt, R.

Liao, M.

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Lyytikainen, K.

G. E. Town, T. Funaba, T. Ryan, and K. Lyytikainen, “Optical supercontinuum generation from nanosecond pump pulses in an irregularly microstructured air-silica optical fiber,” Appl. Phys. B 77, 235–238 (2003).
[CrossRef]

Maillotte, H.

A. Boucon, T. Sylvestre, K. P. Huy, J. C. Beugnot, G. Mélin, H. Maillotte, and J. M. Dudley, “Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber,” Opt. Commun. 284, 467–470 (2011).
[CrossRef]

A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
[CrossRef]

Mattsson, K. E.

Mélin, G.

A. Boucon, T. Sylvestre, K. P. Huy, J. C. Beugnot, G. Mélin, H. Maillotte, and J. M. Dudley, “Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber,” Opt. Commun. 284, 467–470 (2011).
[CrossRef]

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633(2009).
[CrossRef]

A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
[CrossRef]

Messaddeq, Y.

Monro, T. M.

Moore, R. C.

Mussot, A.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633(2009).
[CrossRef]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

Nicholson, J. W.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Noordegraaf, D.

Nowak, G. A.

Ohishi, Y.

Petropoulos, P.

Qin, G.

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Quiquempois, Y.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633(2009).
[CrossRef]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

Ranka, J. K.

Richardson, D. J.

Russell, P. St. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

S. Coen, Alvin Hing Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

Ryan, T.

G. E. Town, T. Funaba, T. Ryan, and K. Lyytikainen, “Optical supercontinuum generation from nanosecond pump pulses in an irregularly microstructured air-silica optical fiber,” Appl. Phys. B 77, 235–238 (2003).
[CrossRef]

Skovgaard, P. M. W.

Skripatchev, I.

Smektala, F.

Smirnov, S. V.

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
[CrossRef]

Stentz, A. J.

Suzuki, T.

Sylvestre, T.

A. Boucon, T. Sylvestre, K. P. Huy, J. C. Beugnot, G. Mélin, H. Maillotte, and J. M. Dudley, “Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber,” Opt. Commun. 284, 467–470 (2011).
[CrossRef]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009).
[CrossRef]

Torres-Peiró, S.

J. Cascante-Vindas, S. Torres-Peiró, A. Diez, and M. V. Andrés, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98, 371–176 (2010).
[CrossRef]

Town, G. E.

G. E. Town, T. Funaba, T. Ryan, and K. Lyytikainen, “Optical supercontinuum generation from nanosecond pump pulses in an irregularly microstructured air-silica optical fiber,” Appl. Phys. B 77, 235–238 (2003).
[CrossRef]

Travers, J. C.

J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers, J. Dudley and R. Taylor, eds. (Cambridge University, 2010), pp. 142–177.

Troles, J.

Vanvincq, O.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

S. Coen, Alvin Hing Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

Windeler, R. S.

Yan, M. F.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Zhu, S. L.

S. L. Zhu, C. X. Gao, H. D. He, L. Feng, and Z. Y. Cao, “All fiber supercontinuum light source using photonic crystal fibers pumped by nanosecond fiber laser pulses,” Laser Phys. 21, 1629–1632 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

J. Cascante-Vindas, S. Torres-Peiró, A. Diez, and M. V. Andrés, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98, 371–176 (2010).
[CrossRef]

G. E. Town, T. Funaba, T. Ryan, and K. Lyytikainen, “Optical supercontinuum generation from nanosecond pump pulses in an irregularly microstructured air-silica optical fiber,” Appl. Phys. B 77, 235–238 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Boucon, D. Alasia, J. C. Beugnot, G. Mélin, S. Lempereur, A. Fleureau, H. Maillotte, and J. M. Dudley, “Supercontinuum generation from 1.35 to 1.7 μm by nanosecond pumping near the second zero-dispersion wavelength of a microstructured fiber,” IEEE Photon. Technol. Lett. 20, 842–844 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Laser Phys. (2)

S. L. Zhu, C. X. Gao, H. D. He, L. Feng, and Z. Y. Cao, “All fiber supercontinuum light source using photonic crystal fibers pumped by nanosecond fiber laser pulses,” Laser Phys. 21, 1629–1632 (2011).
[CrossRef]

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010).
[CrossRef]

Nat. Photon. (1)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009).
[CrossRef]

Opt. Commun. (1)

A. Boucon, T. Sylvestre, K. P. Huy, J. C. Beugnot, G. Mélin, H. Maillotte, and J. M. Dudley, “Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber,” Opt. Commun. 284, 467–470 (2011).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other (1)

J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers, J. Dudley and R. Taylor, eds. (Cambridge University, 2010), pp. 142–177.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Characteristics of the pump source and the 20 m silica HNLF. (a) The spectrum of the seed pulse generated by the Q-switched fiber laser (inset: the variation of 3 dB bandwidth after amplified by the EDFA); (b) the oscilloscope train of the seed pulse with the 760 ns temporal width and 242 kHz repetition rate; (c) the variation of pulse width and the calculated peak powers with the amplification of the EDFA; and (d) the measured dispersion profile of the 20 m silica HNLF.

Fig. 2.
Fig. 2.

SC spectra generated in the 20 m HNLF by the submicrosecond pulse with different peak powers.

Fig. 3.
Fig. 3.

Measured average power of the SC spectra versus the average powers of the submicrosecond pump pulse.

Fig. 4.
Fig. 4.

Spectrum density of the SCs generated by the 20 m HNLF and the 100 m HNLF1 with the same pump peak power of 17.8 W. Inset: Measured dispersion (dash dot curve) and fit curve (solid curve) for the HNLF1.

Fig. 5.
Fig. 5.

Simulated spectrum in the 20 m HNLF by the generalized nonlinear Schrödinger equation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T0=2|β2|π2γP0
Az=α2A+k2ik+1k!βkkAτk+iγA(z,τ)+R(τ)|A(z,ττ)|2dτ,

Metrics