Abstract

We present a method for determining the three-dimensional intensity distribution of directed laser radiation with micrometer resolution in restricted volumes. Our method is based on the incoupling and guiding properties of optical fibers, with the current version requiring only a few hundred micrometers across the measuring volume. We characterize the performance of the method and experimentally demonstrate profiling of micrometer-sized laser beams. We discuss the limiting factors and routes toward a further increase of the resolution and beam profiling in even more restricted volumes. Finally, as an application example, we present profiling of laser beams inside a micro ion trap with integrated optical fibers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kokobun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6, 522–528 (2009).
    [CrossRef]
  2. M. Mansuripur and G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
    [CrossRef]
  3. J. W. Nibler and J. J. Yang, “Nonlinear Raman spectroscopy of gases,” Annu. Rev. Phys. Chem. 38, 349–381 (1987).
    [CrossRef]
  4. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
    [CrossRef]
  5. J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quantum Inf. Comp. 9, 181–202(2009).
  6. J. Knudtson and K. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983).
    [CrossRef]
  7. J. Arnaud, W. Hubbard, G. Mandeville, B. de la Claviere, E. Franke, and J. Franke, “Technique for fast measurement of Gaussian beam parameters,” Appl. Opt. 10, 2775–2776 (1971).
    [CrossRef]
  8. M. Giles and E. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” Proc. SPIE 500, 67–70 (1984).
  9. P. Shayler, “Laser beam distribution in the focal region,” Appl. Opt. 17, 2673–2674 (1978).
    [CrossRef]
  10. P. Brannon, J. Anthes, G. Cano, and J. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
    [CrossRef]
  11. C. Wang, “Measuring 2-D laser-beam phase and intensity profiles: a new technique,” Appl. Opt. 23, 1399–1402 (1984).
    [CrossRef]
  12. G. Lim and W. Steen, “Measurement of the temporal and spatial power distribution of a high-power CO2 laser beam,” Opt. Laser Technol. 14, 149–153 (1982).
    [CrossRef]
  13. E. Granneman and M. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975).
    [CrossRef]
  14. S. Sorscher and M. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980).
    [CrossRef]
  15. A. Rose, Y. Nie, and R. Gupta, “Laser beam measurement by photothermal deflection technique,” Appl. Opt. 25, 1738–1741 (1986).
    [CrossRef]
  16. T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
    [CrossRef]
  17. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  18. The fiber core acts as an effective “pinhole” for the incoupled into the fiber beam. The image of the pinhole is enlarged in the x direction due to the lensing effect of the fiber wall, but stays unchanged in the y direction. Using ray optics we estimate the enlargement to be n, where n=1.46 is the index of refraction of the fiber glass. The contribution from the lensing effect is fully taken into account in the calibration measurement; see Figs. 4 and 5.

2009 (2)

Y. Kokobun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6, 522–528 (2009).
[CrossRef]

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quantum Inf. Comp. 9, 181–202(2009).

2007 (1)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

1997 (1)

M. Mansuripur and G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

1987 (1)

J. W. Nibler and J. J. Yang, “Nonlinear Raman spectroscopy of gases,” Annu. Rev. Phys. Chem. 38, 349–381 (1987).
[CrossRef]

1986 (2)

A. Rose, Y. Nie, and R. Gupta, “Laser beam measurement by photothermal deflection technique,” Appl. Opt. 25, 1738–1741 (1986).
[CrossRef]

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
[CrossRef]

1984 (2)

M. Giles and E. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” Proc. SPIE 500, 67–70 (1984).

C. Wang, “Measuring 2-D laser-beam phase and intensity profiles: a new technique,” Appl. Opt. 23, 1399–1402 (1984).
[CrossRef]

1983 (1)

J. Knudtson and K. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

1982 (1)

G. Lim and W. Steen, “Measurement of the temporal and spatial power distribution of a high-power CO2 laser beam,” Opt. Laser Technol. 14, 149–153 (1982).
[CrossRef]

1980 (1)

S. Sorscher and M. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980).
[CrossRef]

1978 (1)

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

1975 (2)

P. Brannon, J. Anthes, G. Cano, and J. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

E. Granneman and M. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975).
[CrossRef]

1971 (1)

Anthes, J.

P. Brannon, J. Anthes, G. Cano, and J. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

Arai, T.

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
[CrossRef]

Arnaud, J.

Baba, T.

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
[CrossRef]

Brannon, P.

P. Brannon, J. Anthes, G. Cano, and J. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

Cano, G.

P. Brannon, J. Anthes, G. Cano, and J. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

Colombe, Y.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

de la Claviere, B.

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Franke, E.

Franke, J.

Giles, M.

M. Giles and E. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” Proc. SPIE 500, 67–70 (1984).

Granneman, E.

E. Granneman and M. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975).
[CrossRef]

Gupta, R.

Hubbard, W.

Hunger, D.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Kim, C.

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quantum Inf. Comp. 9, 181–202(2009).

Kim, E.

M. Giles and E. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” Proc. SPIE 500, 67–70 (1984).

Kim, J.

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quantum Inf. Comp. 9, 181–202(2009).

Klein, M.

S. Sorscher and M. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980).
[CrossRef]

Knudtson, J.

J. Knudtson and K. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

Kokobun, Y.

Y. Kokobun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6, 522–528 (2009).
[CrossRef]

Koshiba, M.

Y. Kokobun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6, 522–528 (2009).
[CrossRef]

Lim, G.

G. Lim and W. Steen, “Measurement of the temporal and spatial power distribution of a high-power CO2 laser beam,” Opt. Laser Technol. 14, 149–153 (1982).
[CrossRef]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Mandeville, G.

Mansuripur, M.

M. Mansuripur and G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Nibler, J. W.

J. W. Nibler and J. J. Yang, “Nonlinear Raman spectroscopy of gases,” Annu. Rev. Phys. Chem. 38, 349–381 (1987).
[CrossRef]

Nie, Y.

Ono, A.

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
[CrossRef]

Powell, J.

P. Brannon, J. Anthes, G. Cano, and J. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

Ratzlaff, K.

J. Knudtson and K. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

Reichel, J.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Rose, A.

Shayler, P.

Sincerbox, G.

M. Mansuripur and G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

Sorscher, S.

S. Sorscher and M. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980).
[CrossRef]

Steen, W.

G. Lim and W. Steen, “Measurement of the temporal and spatial power distribution of a high-power CO2 laser beam,” Opt. Laser Technol. 14, 149–153 (1982).
[CrossRef]

Steinmetz, T.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

van der Wiel, M.

E. Granneman and M. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975).
[CrossRef]

Wang, C.

Yang, J. J.

J. W. Nibler and J. J. Yang, “Nonlinear Raman spectroscopy of gases,” Annu. Rev. Phys. Chem. 38, 349–381 (1987).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

J. W. Nibler and J. J. Yang, “Nonlinear Raman spectroscopy of gases,” Annu. Rev. Phys. Chem. 38, 349–381 (1987).
[CrossRef]

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

IEICE Electron. Express (1)

Y. Kokobun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6, 522–528 (2009).
[CrossRef]

J. Appl. Phys. (1)

P. Brannon, J. Anthes, G. Cano, and J. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

Nature (1)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[CrossRef]

Opt. Laser Technol. (1)

G. Lim and W. Steen, “Measurement of the temporal and spatial power distribution of a high-power CO2 laser beam,” Opt. Laser Technol. 14, 149–153 (1982).
[CrossRef]

Proc. IEEE (1)

M. Mansuripur and G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

Proc. SPIE (1)

M. Giles and E. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” Proc. SPIE 500, 67–70 (1984).

Quantum Inf. Comp. (1)

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quantum Inf. Comp. 9, 181–202(2009).

Rev. Sci. Instrum. (4)

J. Knudtson and K. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

E. Granneman and M. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975).
[CrossRef]

S. Sorscher and M. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980).
[CrossRef]

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
[CrossRef]

Other (1)

The fiber core acts as an effective “pinhole” for the incoupled into the fiber beam. The image of the pinhole is enlarged in the x direction due to the lensing effect of the fiber wall, but stays unchanged in the y direction. Using ray optics we estimate the enlargement to be n, where n=1.46 is the index of refraction of the fiber glass. The contribution from the lensing effect is fully taken into account in the calibration measurement; see Figs. 4 and 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principle of operation of the laser beam probe.

Fig. 2.
Fig. 2.

Light coupling into a fiber probe through a slanted tip. (a) Calculated high coupling region (gray) as the function of the fiber polishing angle θ and the incident angle α. (b) Measured transmission of a 22 μm waist beam at λ=866nm through a fiber probe with θ=45° for the vertical (red lower curve) and the horizontal light polarizations (black upper curve).

Fig. 3.
Fig. 3.

The tip of an optical fiber is ground at a desired angle θ using a special support tool.

Fig. 4.
Fig. 4.

Beam waists of three beams measured with the multimode fiber probe along the x axis, compared to the knife edge method. The error bars are comparable to the size of the dots. The solid line with the slope 1 corresponds to a probe with infinitely small fiber core size.

Fig. 5.
Fig. 5.

Beam waists of three beams measured with the single-mode fiber probe along the y direction, compared to the knife edge method. The error bars are comparable to the size of the dots. The solid line with the slope 1 corresponds to a probe with infinitely small fiber core size.

Fig. 6.
Fig. 6.

y-direction scans of the beam with a waist wb=15.7μm. (a) Beam sizes measured along the y direction at different z positions using the knife edge method (red circles) and the fiber probe (blue dots). Note that the centers of the curves were superimposed, since the z references of the two methods are different. (b) Signal of the fiber probe during the vertical scan (blue points) and the corresponding Gaussian fit to the data (red curve) at z=0.79mm, (c) at z=0.01mm, and (d) at z=0.81mm. Each point in these graphs is taken when the fringe from the corresponding Michelson interferometer reaches its maximum during the scan. (e) Example of the interferometer signal.

Fig. 7.
Fig. 7.

Probing beams from optical fibers integrated into a micro ion trap. (a) Schematic of a partly assembled Paul trap. The fibers are integrated between the layers of electrodes. The upper electrodes are not shown. (b) Example of a beam profile measured in situ inside the ion trap.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(d)=4wb2wf2(wb2+wf2)2exp(2d2wb2+wf2),

Metrics