Abstract

SiO2-added MgF2 nanoparticle coatings with various surface roughness properties were formed on fused silica-glass substrates from autoclaved sols prepared at 100–180 °C. To give it hydrophobicity, we treated the samples with fluoro-alkyl silane (FAS) vapor to form self-assembled monolayers on the nanoparticle coating and we examined the wettability of the samples. The samples preserved good transparency even after the FAS treatment. The wettability examination revealed that higher autoclave temperatures produced a larger average MgF2 nanoparticle particle size, a larger surface roughness, and a higher contact angle and the roll-off angle.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigations of MgF2 optical thin films prepared from autoclaved sol,” J. Sol-Gel Sci. Technol. 32, 161–165 (2004).
    [CrossRef]
  2. T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Preparation of high performance optical coatings with fluoride-nano-particle films made from autoclaved sols,” Appl. Opt. 45, 1465–1468 (2006).
    [CrossRef]
  3. T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigation of MgF2 optical thin films with ultralow refractive indices prepared from autoclaved sol,” Appl. Opt. 47, 246–250 (2008).
    [CrossRef]
  4. T. Murata, H. Ishizawa, and A. Tanaka, “High-performance antireflective coatings with a porous nanoparticle layer for visible wavelengths,” Appl. Opt. 50, C403–C407 (2011).
    [CrossRef]
  5. W. Barthlott and C. Neinhuis, “The purity of sacred lotus or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).
    [CrossRef]
  6. M. Suzuki, “Development and application of clear super water repellent using nano-particle,” J. Adhes. Soc. Jpn. 43, 488–493 (2007).
  7. M. Hikita, K. Tanaka, T. Nakamura, A. Takahara, and T. Kajiyama, “Transparent super-hydrophobic coatings based on fluoroalkylsilane-silica hybrid materials,” J. Surf. Sci. Soc. Jpn. 26, 559–563 (2005).
    [CrossRef]
  8. E. Wolfram and R. Faust, “Liquid drops on a tilted plate, contact angle hysteresis and the Young contact angle,” in Wetting, Spreading and Adhesion, J. F. Padday, ed. (Academic, 1978), pp. 213–222.
  9. R. H. Dettre and R. E. Johnson, “Contact angle hysteresis.II. Contact angle measurements on rough surfaces,” in Contact Angles, Wettability, and Adhesion, Vol. 43 of Advances in Chemistry Series, R. F. Gould, ed. (American Chemical Society, 1964), pp. 136–144.
  10. K. Kurogi, H. Yan, and K. Tsujii, “Importance of pinning effect of wetting in super water-repellent surfaces,” Colloids Surf. A 317, 592–597 (2008).
    [CrossRef]
  11. A. Marmur, “Solid-surface characterization by wetting,” Annu. Rev. Mater. Res. 39, 473–489 (2009).
    [CrossRef]

2011 (1)

2009 (1)

A. Marmur, “Solid-surface characterization by wetting,” Annu. Rev. Mater. Res. 39, 473–489 (2009).
[CrossRef]

2008 (2)

K. Kurogi, H. Yan, and K. Tsujii, “Importance of pinning effect of wetting in super water-repellent surfaces,” Colloids Surf. A 317, 592–597 (2008).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigation of MgF2 optical thin films with ultralow refractive indices prepared from autoclaved sol,” Appl. Opt. 47, 246–250 (2008).
[CrossRef]

2007 (1)

M. Suzuki, “Development and application of clear super water repellent using nano-particle,” J. Adhes. Soc. Jpn. 43, 488–493 (2007).

2006 (1)

2005 (1)

M. Hikita, K. Tanaka, T. Nakamura, A. Takahara, and T. Kajiyama, “Transparent super-hydrophobic coatings based on fluoroalkylsilane-silica hybrid materials,” J. Surf. Sci. Soc. Jpn. 26, 559–563 (2005).
[CrossRef]

2004 (1)

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigations of MgF2 optical thin films prepared from autoclaved sol,” J. Sol-Gel Sci. Technol. 32, 161–165 (2004).
[CrossRef]

1997 (1)

W. Barthlott and C. Neinhuis, “The purity of sacred lotus or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).
[CrossRef]

Barthlott, W.

W. Barthlott and C. Neinhuis, “The purity of sacred lotus or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).
[CrossRef]

Dettre, R. H.

R. H. Dettre and R. E. Johnson, “Contact angle hysteresis.II. Contact angle measurements on rough surfaces,” in Contact Angles, Wettability, and Adhesion, Vol. 43 of Advances in Chemistry Series, R. F. Gould, ed. (American Chemical Society, 1964), pp. 136–144.

Faust, R.

E. Wolfram and R. Faust, “Liquid drops on a tilted plate, contact angle hysteresis and the Young contact angle,” in Wetting, Spreading and Adhesion, J. F. Padday, ed. (Academic, 1978), pp. 213–222.

Hikita, M.

M. Hikita, K. Tanaka, T. Nakamura, A. Takahara, and T. Kajiyama, “Transparent super-hydrophobic coatings based on fluoroalkylsilane-silica hybrid materials,” J. Surf. Sci. Soc. Jpn. 26, 559–563 (2005).
[CrossRef]

Ishizawa, H.

T. Murata, H. Ishizawa, and A. Tanaka, “High-performance antireflective coatings with a porous nanoparticle layer for visible wavelengths,” Appl. Opt. 50, C403–C407 (2011).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigation of MgF2 optical thin films with ultralow refractive indices prepared from autoclaved sol,” Appl. Opt. 47, 246–250 (2008).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Preparation of high performance optical coatings with fluoride-nano-particle films made from autoclaved sols,” Appl. Opt. 45, 1465–1468 (2006).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigations of MgF2 optical thin films prepared from autoclaved sol,” J. Sol-Gel Sci. Technol. 32, 161–165 (2004).
[CrossRef]

Johnson, R. E.

R. H. Dettre and R. E. Johnson, “Contact angle hysteresis.II. Contact angle measurements on rough surfaces,” in Contact Angles, Wettability, and Adhesion, Vol. 43 of Advances in Chemistry Series, R. F. Gould, ed. (American Chemical Society, 1964), pp. 136–144.

Kajiyama, T.

M. Hikita, K. Tanaka, T. Nakamura, A. Takahara, and T. Kajiyama, “Transparent super-hydrophobic coatings based on fluoroalkylsilane-silica hybrid materials,” J. Surf. Sci. Soc. Jpn. 26, 559–563 (2005).
[CrossRef]

Kurogi, K.

K. Kurogi, H. Yan, and K. Tsujii, “Importance of pinning effect of wetting in super water-repellent surfaces,” Colloids Surf. A 317, 592–597 (2008).
[CrossRef]

Marmur, A.

A. Marmur, “Solid-surface characterization by wetting,” Annu. Rev. Mater. Res. 39, 473–489 (2009).
[CrossRef]

Motoyama, I.

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigation of MgF2 optical thin films with ultralow refractive indices prepared from autoclaved sol,” Appl. Opt. 47, 246–250 (2008).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Preparation of high performance optical coatings with fluoride-nano-particle films made from autoclaved sols,” Appl. Opt. 45, 1465–1468 (2006).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigations of MgF2 optical thin films prepared from autoclaved sol,” J. Sol-Gel Sci. Technol. 32, 161–165 (2004).
[CrossRef]

Murata, T.

T. Murata, H. Ishizawa, and A. Tanaka, “High-performance antireflective coatings with a porous nanoparticle layer for visible wavelengths,” Appl. Opt. 50, C403–C407 (2011).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigation of MgF2 optical thin films with ultralow refractive indices prepared from autoclaved sol,” Appl. Opt. 47, 246–250 (2008).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Preparation of high performance optical coatings with fluoride-nano-particle films made from autoclaved sols,” Appl. Opt. 45, 1465–1468 (2006).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigations of MgF2 optical thin films prepared from autoclaved sol,” J. Sol-Gel Sci. Technol. 32, 161–165 (2004).
[CrossRef]

Nakamura, T.

M. Hikita, K. Tanaka, T. Nakamura, A. Takahara, and T. Kajiyama, “Transparent super-hydrophobic coatings based on fluoroalkylsilane-silica hybrid materials,” J. Surf. Sci. Soc. Jpn. 26, 559–563 (2005).
[CrossRef]

Neinhuis, C.

W. Barthlott and C. Neinhuis, “The purity of sacred lotus or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).
[CrossRef]

Suzuki, M.

M. Suzuki, “Development and application of clear super water repellent using nano-particle,” J. Adhes. Soc. Jpn. 43, 488–493 (2007).

Takahara, A.

M. Hikita, K. Tanaka, T. Nakamura, A. Takahara, and T. Kajiyama, “Transparent super-hydrophobic coatings based on fluoroalkylsilane-silica hybrid materials,” J. Surf. Sci. Soc. Jpn. 26, 559–563 (2005).
[CrossRef]

Tanaka, A.

T. Murata, H. Ishizawa, and A. Tanaka, “High-performance antireflective coatings with a porous nanoparticle layer for visible wavelengths,” Appl. Opt. 50, C403–C407 (2011).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigation of MgF2 optical thin films with ultralow refractive indices prepared from autoclaved sol,” Appl. Opt. 47, 246–250 (2008).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Preparation of high performance optical coatings with fluoride-nano-particle films made from autoclaved sols,” Appl. Opt. 45, 1465–1468 (2006).
[CrossRef]

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigations of MgF2 optical thin films prepared from autoclaved sol,” J. Sol-Gel Sci. Technol. 32, 161–165 (2004).
[CrossRef]

Tanaka, K.

M. Hikita, K. Tanaka, T. Nakamura, A. Takahara, and T. Kajiyama, “Transparent super-hydrophobic coatings based on fluoroalkylsilane-silica hybrid materials,” J. Surf. Sci. Soc. Jpn. 26, 559–563 (2005).
[CrossRef]

Tsujii, K.

K. Kurogi, H. Yan, and K. Tsujii, “Importance of pinning effect of wetting in super water-repellent surfaces,” Colloids Surf. A 317, 592–597 (2008).
[CrossRef]

Wolfram, E.

E. Wolfram and R. Faust, “Liquid drops on a tilted plate, contact angle hysteresis and the Young contact angle,” in Wetting, Spreading and Adhesion, J. F. Padday, ed. (Academic, 1978), pp. 213–222.

Yan, H.

K. Kurogi, H. Yan, and K. Tsujii, “Importance of pinning effect of wetting in super water-repellent surfaces,” Colloids Surf. A 317, 592–597 (2008).
[CrossRef]

Annu. Rev. Mater. Res. (1)

A. Marmur, “Solid-surface characterization by wetting,” Annu. Rev. Mater. Res. 39, 473–489 (2009).
[CrossRef]

Appl. Opt. (3)

Colloids Surf. A (1)

K. Kurogi, H. Yan, and K. Tsujii, “Importance of pinning effect of wetting in super water-repellent surfaces,” Colloids Surf. A 317, 592–597 (2008).
[CrossRef]

J. Adhes. Soc. Jpn. (1)

M. Suzuki, “Development and application of clear super water repellent using nano-particle,” J. Adhes. Soc. Jpn. 43, 488–493 (2007).

J. Sol-Gel Sci. Technol. (1)

T. Murata, H. Ishizawa, I. Motoyama, and A. Tanaka, “Investigations of MgF2 optical thin films prepared from autoclaved sol,” J. Sol-Gel Sci. Technol. 32, 161–165 (2004).
[CrossRef]

J. Surf. Sci. Soc. Jpn. (1)

M. Hikita, K. Tanaka, T. Nakamura, A. Takahara, and T. Kajiyama, “Transparent super-hydrophobic coatings based on fluoroalkylsilane-silica hybrid materials,” J. Surf. Sci. Soc. Jpn. 26, 559–563 (2005).
[CrossRef]

Planta (1)

W. Barthlott and C. Neinhuis, “The purity of sacred lotus or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).
[CrossRef]

Other (2)

E. Wolfram and R. Faust, “Liquid drops on a tilted plate, contact angle hysteresis and the Young contact angle,” in Wetting, Spreading and Adhesion, J. F. Padday, ed. (Academic, 1978), pp. 213–222.

R. H. Dettre and R. E. Johnson, “Contact angle hysteresis.II. Contact angle measurements on rough surfaces,” in Contact Angles, Wettability, and Adhesion, Vol. 43 of Advances in Chemistry Series, R. F. Gould, ed. (American Chemical Society, 1964), pp. 136–144.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Experimental procedure for forming the SiO2 binder-added MgF2 nanoparticle coating with FAS treatment.

Fig. 2.
Fig. 2.

Adhesive energy measurement of a water droplet: r, radius of contact area of a droplet; m, mass of a droplet; g, acceleration of gravity; θSL, roll-off angle; θa, advancing angle; θr, receding angle.

Fig. 3.
Fig. 3.

Distributions of the MgF2 particle size in the autoclaved sols; 100 °C, MgF2 particle autoclaved at 100 °C; 140 °C, MgF2 particle autoclaved at 140 °C; 180 °C, MgF2 particle autoclaved at 180 °C.

Fig. 4.
Fig. 4.

Photographs of the coated sample before and after the FAS treatment: SiO2 glass, fused silica-glass disks (30 mm, thickness=3mm); stack, 1 layer: (a) before FAS treatment, (b) after FAS treatment: (1) fused silica-glass disk, (2) nanoparticle sample prepared from the 100 °C autoclaved sol, (3) nanoparticle sample prepared from the 140 °C autoclaved sol, and (4) nanoparticle sample prepared from the 180 °C autoclaved sol.

Fig. 5.
Fig. 5.

Transmittances of the fused silica-glass substrate and SiO2 binder added MgF2 nanoparticle samples coated on one side as shown in Fig. 4. (a) Before FAS treatment and (b) after FAS treatment: SiO2 glass, fused silica-glass disk; 100 °C, prepared from the 100 °C autoclaved sol; 140 °C, prepared from the 140 °C autoclaved sol; 180 °C, prepared from the 180 °C autoclaved sol.

Fig. 6.
Fig. 6.

Scanning probe microscope images of the SiO2 binder-added MgF2 nanoparticle coatings before and after FAS treatment: substrate, fused silica-glass disk (30 mm, thickness=3mm); stack, 1 layer; scan area, 1 μm.

Fig. 7.
Fig. 7.

Relationship between the Sq of the FAS-treated samples and the static contact angle of water: droplet size, 2.0 μL; contact angle, average value of ten measurements; SiO2 glass, fused silica-glass disk; 100 °C, prepared from the 100 °C autoclaved sol; 140 °C, prepared from the 140 °C autoclaved sol; 180 °C, prepared from the 180 °C autoclaved sol.

Fig. 8.
Fig. 8.

Roll-off angles of a water droplet on the FAS-treated samples: droplet volume, 40–60 μL; SiO2 glass, fused silica-glass disk; 100 °C, prepared from the 100 °C autoclaved sol; 140 °C, prepared from the 140 °C autoclaved sol; 180 °C, prepared from the 180 °C autoclaved sol.

Fig. 9.
Fig. 9.

Adhesive energies of a water droplet on the FAS-treated samples: droplet volume, 40–60 μL; SiO2 glass, fused-silica glass disk; 100 °C, prepared from the 100 °C autoclaved sol; 140 °C, prepared from the 140 °C autoclaved sol; 180 °C, prepared from the 180 °C autoclaved sol.

Fig. 10.
Fig. 10.

Changes of the θa and θr values of a water droplet on the FAS-treated samples during the roll-off angle measurements: droplet volume, 40 μL; substrate, fused silica-glass disk; gray line, roll-off angle; 100 °C, prepared from the 100 °C autoclaved sol; 140 °C, prepared from the 140 °C autoclaved sol; 180 °C, prepared from the 180 °C autoclaved sol.

Fig. 11.
Fig. 11.

Δθs of a water droplet on the FAS-treated samples at roll-off angles: SiO2 glass, fused silica-glass disk; 100 °C, prepared from the 100 °C autoclaved sol; 140 °C, prepared from the 140 °C autoclaved sol; 180 °C, prepared from the 180 °C autoclaved sol.

Fig. 12.
Fig. 12.

Relationship between Sq and the Δθ values of the FAS-treated samples at roll-off angles: SiO2 glass, fused silica-glass disk; 100 °C, prepared from the 100 °C autoclaved sol; 140 °C, prepared from the 140 °C autoclaved sol; 180 °C, prepared from the 180 °C autoclaved sol.

Fig. 13.
Fig. 13.

Schematic diagrams of the FAS-treated nanoparticle coating samples with different coverage of the binder layer: (a) structure of a nanoparticle coating with 100% coverage of the binder layer; (b) structure of a nanoparticle coating with less than 100% coverage of the binder layer.

Fig. 14.
Fig. 14.

Schematic diagrams of the FAS-treated nanoparticle coating samples with different particle sizes in contact with a water droplet: (a) a nanoparticle coating consists of fine MgF2 particles; (b) a nanoparticle coating consists of coarse MgF2 particles.

Tables (4)

Tables Icon

Table 1. Comparison of dp and dw of MgF2 Nanoparticles

Tables Icon

Table 2. Nanoparticle Layer Refractive Index and Thickness of the Samples Shown in Fig. 4(a)

Tables Icon

Table 3. Sq of the Samples Before and After FAS Treatment Measured with SPM

Tables Icon

Table 4. Static Contact Angles of the Samples Before and After FAS Treatment

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E=mgsinθSL/2πr.

Metrics