Abstract

A single-pass backward configuration superfluorescent fiber source (SFS) based on erbium-doped photonic crystal fiber (EDPCF) with a high mean wavelength stability was proposed. The EDPCF was used to improve the intrinsic temperature dependence of the SFS. Using the optimal EDPCF length of 24.2 m and pump power of 204 mW, a 20.7 ppm mean wavelength stability of a prototype SFS was demonstrated with increased temperature from 40°C to 60 °C. The mean wavelength had an ultra stability of 10.3 ppm with increased temperature from 20°C to 60 °C.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
    [CrossRef]
  2. D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+ doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
    [CrossRef]
  3. L. A. Wang, C. T. Lee, and G. W. You, “Polarized erbium-doped superfluorescent fiber source utilizing double-pass backward configuration,” Appl. Opt. 44, 77–82 (2005).
  4. D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability,” IEEE Photon. Technol. Lett. 13, 25–27 (2001).
    [CrossRef]
  5. D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
    [CrossRef]
  6. H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilization,” Electron. Lett. 33, 2061–2062 (1997).
    [CrossRef]
  7. P. Ou, B. Cao, C. X. Zhang, Y. Li, and Y. H. Yang, “Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating,” Electron. Lett. 44, 187–189 (2008).
    [CrossRef]
  8. A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009).
    [CrossRef]
  9. A. M. Wang, “High stability Er-doped superfluorescent fiber source improved by incorporating bandpass fiber,” IEEE Photon. Technol. Lett. 23, 227–229 (2011).
    [CrossRef]
  10. T. Matsui, J. Zhou, and K. Nakajima, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23, 4178–4183 (2005).
    [CrossRef]
  11. M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746–1756 (2003).
    [CrossRef]
  12. D. Chen and L. F. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007).
    [CrossRef]
  13. E. K. Akowuah, H. Ademgil, S. Haxha, and F. A. Malek, “An endlessly single-mode photonic crystal fiber with low chromatic dispersion and bend and rotational insensitivity,” J. Lightwave Technol. 27, 3940–3947 (2009).
    [CrossRef]
  14. C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
    [CrossRef]
  15. H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
    [CrossRef]
  16. M. Y. Chen and Y. K. Zhang, “Bend insensitive design of large-mode-area microstructured optical fibers,” J. Lightwave Technol. 29, 2216–2222 (2011).
    [CrossRef]
  17. S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861–865 (2007).
    [CrossRef]
  18. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
    [CrossRef]
  19. K. Furusawa, T. Kogure, T. M. Monro, and D. J. Richardson, “High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber,” Opt. Express 12, 3452–3458 (2004).
    [CrossRef]
  20. C. X. Liu, L. Zhang, X. Wu, H. L. Yang, and S. C. Ruan, “Coupling technique of photonic crystal fiber,” Journal of Chinese Inertial Technology 17, 366–369 (2009).
    [CrossRef]

2011

A. M. Wang, “High stability Er-doped superfluorescent fiber source improved by incorporating bandpass fiber,” IEEE Photon. Technol. Lett. 23, 227–229 (2011).
[CrossRef]

M. Y. Chen and Y. K. Zhang, “Bend insensitive design of large-mode-area microstructured optical fibers,” J. Lightwave Technol. 29, 2216–2222 (2011).
[CrossRef]

2009

E. K. Akowuah, H. Ademgil, S. Haxha, and F. A. Malek, “An endlessly single-mode photonic crystal fiber with low chromatic dispersion and bend and rotational insensitivity,” J. Lightwave Technol. 27, 3940–3947 (2009).
[CrossRef]

A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009).
[CrossRef]

C. X. Liu, L. Zhang, X. Wu, H. L. Yang, and S. C. Ruan, “Coupling technique of photonic crystal fiber,” Journal of Chinese Inertial Technology 17, 366–369 (2009).
[CrossRef]

2008

P. Ou, B. Cao, C. X. Zhang, Y. Li, and Y. H. Yang, “Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating,” Electron. Lett. 44, 187–189 (2008).
[CrossRef]

2007

S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861–865 (2007).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

D. Chen and L. F. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007).
[CrossRef]

2005

2004

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
[CrossRef]

K. Furusawa, T. Kogure, T. M. Monro, and D. J. Richardson, “High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber,” Opt. Express 12, 3452–3458 (2004).
[CrossRef]

2003

2001

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability,” IEEE Photon. Technol. Lett. 13, 25–27 (2001).
[CrossRef]

2000

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
[CrossRef]

1997

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilization,” Electron. Lett. 33, 2061–2062 (1997).
[CrossRef]

1995

D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+ doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

1994

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Ademgil, H.

Akowuah, E. K.

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Blin, S.

Burns, W. K.

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilization,” Electron. Lett. 33, 2061–2062 (1997).
[CrossRef]

D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+ doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

Cao, B.

P. Ou, B. Cao, C. X. Zhang, Y. Li, and Y. H. Yang, “Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating,” Electron. Lett. 44, 187–189 (2008).
[CrossRef]

Chen, D.

D. Chen and L. F. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007).
[CrossRef]

Chen, M. Y.

Cui, X. M.

A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009).
[CrossRef]

Demonkan, M. S.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Digonnet, M. J. F.

S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861–865 (2007).
[CrossRef]

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability,” IEEE Photon. Technol. Lett. 13, 25–27 (2001).
[CrossRef]

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Dobb, H.

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
[CrossRef]

Falquier, D. G.

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability,” IEEE Photon. Technol. Lett. 13, 25–27 (2001).
[CrossRef]

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
[CrossRef]

Feng, L. S.

A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009).
[CrossRef]

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Furusawa, K.

Gan, Z. Z.

A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009).
[CrossRef]

Hall, D. C.

D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+ doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

Haxha, S.

Jin, W.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Kalli, K.

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
[CrossRef]

Kersey, A. D.

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilization,” Electron. Lett. 33, 2061–2062 (1997).
[CrossRef]

Kim, B. Y.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Kim, H. K.

Kino, G. S.

Kogure, T.

Koshiba, M.

Lee, C. T.

Li, Y.

P. Ou, B. Cao, C. X. Zhang, Y. Li, and Y. H. Yang, “Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating,” Electron. Lett. 44, 187–189 (2008).
[CrossRef]

Liu, C. X.

C. X. Liu, L. Zhang, X. Wu, H. L. Yang, and S. C. Ruan, “Coupling technique of photonic crystal fiber,” Journal of Chinese Inertial Technology 17, 366–369 (2009).
[CrossRef]

Liu, H. D.

A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009).
[CrossRef]

Lu, C.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Malek, F. A.

Matsui, T.

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Moeller, R. P.

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilization,” Electron. Lett. 33, 2061–2062 (1997).
[CrossRef]

D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+ doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

Monro, T. M.

Nakajima, K.

Ou, P.

A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009).
[CrossRef]

P. Ou, B. Cao, C. X. Zhang, Y. Li, and Y. H. Yang, “Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating,” Electron. Lett. 44, 187–189 (2008).
[CrossRef]

Patrick, H. J.

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilization,” Electron. Lett. 33, 2061–2062 (1997).
[CrossRef]

Pruneri, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Richardson, D. J.

Ruan, S. C.

C. X. Liu, L. Zhang, X. Wu, H. L. Yang, and S. C. Ruan, “Coupling technique of photonic crystal fiber,” Journal of Chinese Inertial Technology 17, 366–369 (2009).
[CrossRef]

Saitoh, K.

Shaw, H. J.

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability,” IEEE Photon. Technol. Lett. 13, 25–27 (2001).
[CrossRef]

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Shen, L. F.

D. Chen and L. F. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007).
[CrossRef]

Villatoro, J.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Wang, A.

A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009).
[CrossRef]

Wang, A. M.

A. M. Wang, “High stability Er-doped superfluorescent fiber source improved by incorporating bandpass fiber,” IEEE Photon. Technol. Lett. 23, 227–229 (2011).
[CrossRef]

Wang, L. A.

Webb, D. J.

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
[CrossRef]

Wu, X.

C. X. Liu, L. Zhang, X. Wu, H. L. Yang, and S. C. Ruan, “Coupling technique of photonic crystal fiber,” Journal of Chinese Inertial Technology 17, 366–369 (2009).
[CrossRef]

Wysocki, P. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Yang, H. L.

C. X. Liu, L. Zhang, X. Wu, H. L. Yang, and S. C. Ruan, “Coupling technique of photonic crystal fiber,” Journal of Chinese Inertial Technology 17, 366–369 (2009).
[CrossRef]

Yang, X.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Yang, Y. H.

P. Ou, B. Cao, C. X. Zhang, Y. Li, and Y. H. Yang, “Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating,” Electron. Lett. 44, 187–189 (2008).
[CrossRef]

You, G. W.

Zhang, C. X.

A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009).
[CrossRef]

P. Ou, B. Cao, C. X. Zhang, Y. Li, and Y. H. Yang, “Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating,” Electron. Lett. 44, 187–189 (2008).
[CrossRef]

Zhang, L.

C. X. Liu, L. Zhang, X. Wu, H. L. Yang, and S. C. Ruan, “Coupling technique of photonic crystal fiber,” Journal of Chinese Inertial Technology 17, 366–369 (2009).
[CrossRef]

Zhang, Y. K.

Zhao, C. L.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

Zhou, J.

Appl. Opt.

Appl. Phys. Lett.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Electron. Lett.

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
[CrossRef]

H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilization,” Electron. Lett. 33, 2061–2062 (1997).
[CrossRef]

P. Ou, B. Cao, C. X. Zhang, Y. Li, and Y. H. Yang, “Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating,” Electron. Lett. 44, 187–189 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Wang, P. Ou, L. S. Feng, C. X. Zhang, X. M. Cui, H. D. Liu, and Z. Z. Gan, “High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21, 1843–1845 (2009).
[CrossRef]

A. M. Wang, “High stability Er-doped superfluorescent fiber source improved by incorporating bandpass fiber,” IEEE Photon. Technol. Lett. 23, 227–229 (2011).
[CrossRef]

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability,” IEEE Photon. Technol. Lett. 13, 25–27 (2001).
[CrossRef]

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
[CrossRef]

D. Chen and L. F. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007).
[CrossRef]

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004).
[CrossRef]

J. Lightwave Technol.

Journal of Chinese Inertial Technology

C. X. Liu, L. Zhang, X. Wu, H. L. Yang, and S. C. Ruan, “Coupling technique of photonic crystal fiber,” Journal of Chinese Inertial Technology 17, 366–369 (2009).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scanning electron micrograph of the EDPCF.

Fig. 2.
Fig. 2.

Experimental setups of the EDPCF-based SFS (the inset shows the splicing joints).

Fig. 3.
Fig. 3.

Intrinsic mean wavelength variation of the 24.2 m long EDPCF versus different temperatures.

Fig. 4.
Fig. 4.

Obtained spectra of the SFS based on a 24.2 m long EDPCF with 204 mW of pump power at different temperatures.

Fig. 5.
Fig. 5.

Measured mean wavelength of the SFS at 204 mW of pump power versus the EDPCF lengths.

Fig. 6.
Fig. 6.

Measured mean wavelength of the SFS based on a 24.2 m long EDPCF versus pump powers.

Fig. 7.
Fig. 7.

Measured mean wavelength stability of the SFS prototype with temperature variation.

Metrics