Abstract

The relationship between the particulate scattering coefficient (bp) and the concentration of suspended particulate matter (SPM), as represented by the mass-specific scattering coefficient of particulates (bp*=bp/SPM), depends on particle size distribution (PSD). This dependence is quantified for minerogenic particle populations in this paper through calculations of bp* for common minerals as idealized populations (monodispersed spheres); contemporaneous measurements of bp, SPM, and light-scattering attributes of mineral particles with scanning electron microscopy interfaced with automated image and x-ray analyses (SAX), for a connected stream–reservoir system where minerogenic particles dominate bp; and estimates of bp and its size dependency (through SAX results-driven Mie theory calculations), particle volume concentration, and bp*. Modest changes in minerogenic PSDs are shown to result in substantial variations in bp*. Good closure of the SAX-based estimates of bp and particle volume concentration with bulk measurements is demonstrated. Converging relationships between bp* and particle size, developed from three approaches, were well described by power law expressions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription