Abstract

A new theoretical framework is proposed to explain the dose and dose-rate dependence of radiation-induced absorption in optical fibers. A first-order dispersive kinetics model is used to simulate the growth of the density of color centers during an irradiation. This model succeeds in explaining the enhanced low dose rate sensitivity observed in certain kinds of erbium-doped optical fiber and provides some insight into the physical reasons behind this sensitivity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Morita and W. Kawakami, “Dose rate effect on radiation induced attenuation of pure silica core optical fibres,” IEEE Trans. Nucl. Sci. 36, 584–590 (1989).
    [CrossRef]
  2. D. L. Griscom, M. E. Gingerich, and J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
    [CrossRef]
  3. G. M. Williams, B. M. Wright, W. D. Mack, and J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).
  4. V. A. Mashkov, W. R. Austin, L. Zhang, and R. G. Leisure, “Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2,” Phys. Rev. Lett. 76, 2926–2929 (1996).
    [CrossRef]
  5. D. L. Griscom, “Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: Application to color centers in silica-based optical fibers,” Phys. Rev. B 64, doc. ID 174201 (2001).
  6. P. Borgermans and B. Brichard, “Kinetic models and spectral dependencies of the radiation-induced attenuation in pure silica fibers,” IEEE Trans. Nucl. Sci. 49, 1439–1445 (2002).
    [CrossRef]
  7. B. D. Evans and G. H. Sigel, “Radiation resistant fiber optic materials and waveguides,” IEEE Trans. Nucl. Sci. 22, 2462–2467 (1975).
    [CrossRef]
  8. E. J. Friebele, K. Long, C. Askins, M. Gingerich, M. Marrone, and D. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–88 (1985).
  9. H. Henschel and E. Baumann, “Effect of natural radioactivity on optical fibers of undersea cables,” J. Lightwave Technol. 14, 724–731 (1996).
    [CrossRef]
  10. M. N. Ott, “Fibre optic cable assemblies for space flight: II. Thermal and radiation effects,” Proc. SPIE 3440, 37–46 (1998).
  11. S. Girard, J. Baggio, and J. Bisutti, “14 MeV neutron, γ-ray, and pulsed x-ray radiation-induced effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 53, 3750–3757 (2006).
    [CrossRef]
  12. E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119 (2007).
    [CrossRef]
  13. T. Wijnands, L. K. De Jonge, J. Kuhnhenn, S. K. Hoeffgen, and U. Weinand, “Optical absorption in commercial single mode optical fibers in a high energy physics radiation field,” IEEE Trans. Nucl. Sci. 55, 2216–2222 (2008).
    [CrossRef]
  14. B. Brichard, A. Fernandez Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effect in erbium-doped fibers for space gyroscopes,” in OFS-16: 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information and Communication Engineers, 2003), pp. 336–339.
  15. J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.
  16. O. Gilard, M. Caussanel, H. Duval, G. Quadri, and F. Reynaud, “New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses,” J. Appl. Phys. 108, doc. ID 093115 (2010).
    [CrossRef]
  17. A. Plonka, Dispersive Kinetics (Kluwer, 2001).
  18. J. Boch, F. Saigné, R. D. Schrimpf, J. R. Vaillé, L. Dusseau, and E. Lorfèvre, “Physical model for the low-dose-rate effect in bipolar devices,” IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006).
    [CrossRef]
  19. J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
    [CrossRef]
  20. T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
    [CrossRef]

2010 (1)

O. Gilard, M. Caussanel, H. Duval, G. Quadri, and F. Reynaud, “New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses,” J. Appl. Phys. 108, doc. ID 093115 (2010).
[CrossRef]

2008 (1)

T. Wijnands, L. K. De Jonge, J. Kuhnhenn, S. K. Hoeffgen, and U. Weinand, “Optical absorption in commercial single mode optical fibers in a high energy physics radiation field,” IEEE Trans. Nucl. Sci. 55, 2216–2222 (2008).
[CrossRef]

2007 (1)

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119 (2007).
[CrossRef]

2006 (3)

S. Girard, J. Baggio, and J. Bisutti, “14 MeV neutron, γ-ray, and pulsed x-ray radiation-induced effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 53, 3750–3757 (2006).
[CrossRef]

J. Boch, F. Saigné, R. D. Schrimpf, J. R. Vaillé, L. Dusseau, and E. Lorfèvre, “Physical model for the low-dose-rate effect in bipolar devices,” IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006).
[CrossRef]

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

2003 (1)

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

2002 (1)

P. Borgermans and B. Brichard, “Kinetic models and spectral dependencies of the radiation-induced attenuation in pure silica fibers,” IEEE Trans. Nucl. Sci. 49, 1439–1445 (2002).
[CrossRef]

2001 (1)

D. L. Griscom, “Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: Application to color centers in silica-based optical fibers,” Phys. Rev. B 64, doc. ID 174201 (2001).

1999 (1)

G. M. Williams, B. M. Wright, W. D. Mack, and J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

1998 (1)

M. N. Ott, “Fibre optic cable assemblies for space flight: II. Thermal and radiation effects,” Proc. SPIE 3440, 37–46 (1998).

1996 (2)

H. Henschel and E. Baumann, “Effect of natural radioactivity on optical fibers of undersea cables,” J. Lightwave Technol. 14, 724–731 (1996).
[CrossRef]

V. A. Mashkov, W. R. Austin, L. Zhang, and R. G. Leisure, “Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2,” Phys. Rev. Lett. 76, 2926–2929 (1996).
[CrossRef]

1993 (1)

D. L. Griscom, M. E. Gingerich, and J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
[CrossRef]

1989 (1)

Y. Morita and W. Kawakami, “Dose rate effect on radiation induced attenuation of pure silica core optical fibres,” IEEE Trans. Nucl. Sci. 36, 584–590 (1989).
[CrossRef]

1985 (1)

E. J. Friebele, K. Long, C. Askins, M. Gingerich, M. Marrone, and D. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–88 (1985).

1975 (1)

B. D. Evans and G. H. Sigel, “Radiation resistant fiber optic materials and waveguides,” IEEE Trans. Nucl. Sci. 22, 2462–2467 (1975).
[CrossRef]

Achten, F.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119 (2007).
[CrossRef]

Askins, C.

E. J. Friebele, K. Long, C. Askins, M. Gingerich, M. Marrone, and D. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–88 (1985).

Austin, W. R.

V. A. Mashkov, W. R. Austin, L. Zhang, and R. G. Leisure, “Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2,” Phys. Rev. Lett. 76, 2926–2929 (1996).
[CrossRef]

Baggio, J.

S. Girard, J. Baggio, and J. Bisutti, “14 MeV neutron, γ-ray, and pulsed x-ray radiation-induced effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 53, 3750–3757 (2006).
[CrossRef]

Baumann, E.

H. Henschel and E. Baumann, “Effect of natural radioactivity on optical fibers of undersea cables,” J. Lightwave Technol. 14, 724–731 (1996).
[CrossRef]

Berghmans, F.

B. Brichard, A. Fernandez Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effect in erbium-doped fibers for space gyroscopes,” in OFS-16: 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information and Communication Engineers, 2003), pp. 336–339.

Bernard, M.

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

Bisutti, J.

S. Girard, J. Baggio, and J. Bisutti, “14 MeV neutron, γ-ray, and pulsed x-ray radiation-induced effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 53, 3750–3757 (2006).
[CrossRef]

Boch, J.

J. Boch, F. Saigné, R. D. Schrimpf, J. R. Vaillé, L. Dusseau, and E. Lorfèvre, “Physical model for the low-dose-rate effect in bipolar devices,” IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006).
[CrossRef]

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

Borgermans, P.

P. Borgermans and B. Brichard, “Kinetic models and spectral dependencies of the radiation-induced attenuation in pure silica fibers,” IEEE Trans. Nucl. Sci. 49, 1439–1445 (2002).
[CrossRef]

Brichard, B.

P. Borgermans and B. Brichard, “Kinetic models and spectral dependencies of the radiation-induced attenuation in pure silica fibers,” IEEE Trans. Nucl. Sci. 49, 1439–1445 (2002).
[CrossRef]

B. Brichard, A. Fernandez Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effect in erbium-doped fibers for space gyroscopes,” in OFS-16: 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information and Communication Engineers, 2003), pp. 336–339.

Burov, E.

J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.

Campbell, A. B.

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

Carlotti, J.-F.

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

Caussanel, M.

O. Gilard, M. Caussanel, H. Duval, G. Quadri, and F. Reynaud, “New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses,” J. Appl. Phys. 108, doc. ID 093115 (2010).
[CrossRef]

De Jonge, L. K.

T. Wijnands, L. K. De Jonge, J. Kuhnhenn, S. K. Hoeffgen, and U. Weinand, “Optical absorption in commercial single mode optical fibers in a high energy physics radiation field,” IEEE Trans. Nucl. Sci. 55, 2216–2222 (2008).
[CrossRef]

Ducret, S.

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

Dusseau, L.

J. Boch, F. Saigné, R. D. Schrimpf, J. R. Vaillé, L. Dusseau, and E. Lorfèvre, “Physical model for the low-dose-rate effect in bipolar devices,” IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006).
[CrossRef]

Duval, H.

O. Gilard, M. Caussanel, H. Duval, G. Quadri, and F. Reynaud, “New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses,” J. Appl. Phys. 108, doc. ID 093115 (2010).
[CrossRef]

Evans, B. D.

B. D. Evans and G. H. Sigel, “Radiation resistant fiber optic materials and waveguides,” IEEE Trans. Nucl. Sci. 22, 2462–2467 (1975).
[CrossRef]

Fernandez Fernandez, A.

B. Brichard, A. Fernandez Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effect in erbium-doped fibers for space gyroscopes,” in OFS-16: 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information and Communication Engineers, 2003), pp. 336–339.

Flammer, I.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119 (2007).
[CrossRef]

Friebele, E. J.

E. J. Friebele, K. Long, C. Askins, M. Gingerich, M. Marrone, and D. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–88 (1985).

Friebele, J.

G. M. Williams, B. M. Wright, W. D. Mack, and J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

D. L. Griscom, M. E. Gingerich, and J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
[CrossRef]

Gilard, O.

O. Gilard, M. Caussanel, H. Duval, G. Quadri, and F. Reynaud, “New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses,” J. Appl. Phys. 108, doc. ID 093115 (2010).
[CrossRef]

J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.

Gingerich, M.

E. J. Friebele, K. Long, C. Askins, M. Gingerich, M. Marrone, and D. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–88 (1985).

Gingerich, M. E.

D. L. Griscom, M. E. Gingerich, and J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
[CrossRef]

Girard, S.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119 (2007).
[CrossRef]

S. Girard, J. Baggio, and J. Bisutti, “14 MeV neutron, γ-ray, and pulsed x-ray radiation-induced effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 53, 3750–3757 (2006).
[CrossRef]

Gooijer, F.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119 (2007).
[CrossRef]

Griscom, D.

E. J. Friebele, K. Long, C. Askins, M. Gingerich, M. Marrone, and D. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–88 (1985).

Griscom, D. L.

D. L. Griscom, “Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: Application to color centers in silica-based optical fibers,” Phys. Rev. B 64, doc. ID 174201 (2001).

D. L. Griscom, M. E. Gingerich, and J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
[CrossRef]

Henschel, H.

H. Henschel and E. Baumann, “Effect of natural radioactivity on optical fibers of undersea cables,” J. Lightwave Technol. 14, 724–731 (1996).
[CrossRef]

Hoeffgen, S. K.

T. Wijnands, L. K. De Jonge, J. Kuhnhenn, S. K. Hoeffgen, and U. Weinand, “Optical absorption in commercial single mode optical fibers in a high energy physics radiation field,” IEEE Trans. Nucl. Sci. 55, 2216–2222 (2008).
[CrossRef]

Kawakami, W.

Y. Morita and W. Kawakami, “Dose rate effect on radiation induced attenuation of pure silica core optical fibres,” IEEE Trans. Nucl. Sci. 36, 584–590 (1989).
[CrossRef]

Krieg, J. F.

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

Kuhnhenn, J.

T. Wijnands, L. K. De Jonge, J. Kuhnhenn, S. K. Hoeffgen, and U. Weinand, “Optical absorption in commercial single mode optical fibers in a high energy physics radiation field,” IEEE Trans. Nucl. Sci. 55, 2216–2222 (2008).
[CrossRef]

Kuyt, G.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119 (2007).
[CrossRef]

Leisure, R. G.

V. A. Mashkov, W. R. Austin, L. Zhang, and R. G. Leisure, “Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2,” Phys. Rev. Lett. 76, 2926–2929 (1996).
[CrossRef]

Long, K.

E. J. Friebele, K. Long, C. Askins, M. Gingerich, M. Marrone, and D. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–88 (1985).

Lorfèvre, E.

J. Boch, F. Saigné, R. D. Schrimpf, J. R. Vaillé, L. Dusseau, and E. Lorfèvre, “Physical model for the low-dose-rate effect in bipolar devices,” IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006).
[CrossRef]

Mack, W. D.

G. M. Williams, B. M. Wright, W. D. Mack, and J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

Marrone, M.

E. J. Friebele, K. Long, C. Askins, M. Gingerich, M. Marrone, and D. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–88 (1985).

Marshall, P. W.

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

Mashkov, V. A.

V. A. Mashkov, W. R. Austin, L. Zhang, and R. G. Leisure, “Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2,” Phys. Rev. Lett. 76, 2926–2929 (1996).
[CrossRef]

Morita, Y.

Y. Morita and W. Kawakami, “Dose rate effect on radiation induced attenuation of pure silica core optical fibres,” IEEE Trans. Nucl. Sci. 36, 584–590 (1989).
[CrossRef]

Myara, M.

J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.

Ooms, H.

B. Brichard, A. Fernandez Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effect in erbium-doped fibers for space gyroscopes,” in OFS-16: 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information and Communication Engineers, 2003), pp. 336–339.

Ott, M. N.

M. N. Ott, “Fibre optic cable assemblies for space flight: II. Thermal and radiation effects,” Proc. SPIE 3440, 37–46 (1998).

Pease, R. L.

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

Plonka, A.

A. Plonka, Dispersive Kinetics (Kluwer, 2001).

Quadri, G.

O. Gilard, M. Caussanel, H. Duval, G. Quadri, and F. Reynaud, “New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses,” J. Appl. Phys. 108, doc. ID 093115 (2010).
[CrossRef]

Reeves, M.

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

Regnier, E.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119 (2007).
[CrossRef]

Régnier, E.

J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.

Reynaud, F.

O. Gilard, M. Caussanel, H. Duval, G. Quadri, and F. Reynaud, “New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses,” J. Appl. Phys. 108, doc. ID 093115 (2010).
[CrossRef]

Saigné, F.

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

J. Boch, F. Saigné, R. D. Schrimpf, J. R. Vaillé, L. Dusseau, and E. Lorfèvre, “Physical model for the low-dose-rate effect in bipolar devices,” IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006).
[CrossRef]

Sarrabayrouse, G.

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

Schmeichel, W. M.

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

Schrimpf, R. D.

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

J. Boch, F. Saigné, R. D. Schrimpf, J. R. Vaillé, L. Dusseau, and E. Lorfèvre, “Physical model for the low-dose-rate effect in bipolar devices,” IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006).
[CrossRef]

Sigel, G. H.

B. D. Evans and G. H. Sigel, “Radiation resistant fiber optic materials and waveguides,” IEEE Trans. Nucl. Sci. 22, 2462–2467 (1975).
[CrossRef]

Signoret, P.

J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.

Sottoms, M.

J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.

Thomas, J.

J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.

Titus, J. L.

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

Touboul, A. D.

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

Troussellier, L.

J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.

Turflinger, T. L.

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

Vaillé, J. R.

J. Boch, F. Saigné, R. D. Schrimpf, J. R. Vaillé, L. Dusseau, and E. Lorfèvre, “Physical model for the low-dose-rate effect in bipolar devices,” IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006).
[CrossRef]

Walters, R. J.

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

Weinand, U.

T. Wijnands, L. K. De Jonge, J. Kuhnhenn, S. K. Hoeffgen, and U. Weinand, “Optical absorption in commercial single mode optical fibers in a high energy physics radiation field,” IEEE Trans. Nucl. Sci. 55, 2216–2222 (2008).
[CrossRef]

Wijnands, T.

T. Wijnands, L. K. De Jonge, J. Kuhnhenn, S. K. Hoeffgen, and U. Weinand, “Optical absorption in commercial single mode optical fibers in a high energy physics radiation field,” IEEE Trans. Nucl. Sci. 55, 2216–2222 (2008).
[CrossRef]

Williams, G. M.

G. M. Williams, B. M. Wright, W. D. Mack, and J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

Wright, B. M.

G. M. Williams, B. M. Wright, W. D. Mack, and J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

Wrobel, F.

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

Zhang, L.

V. A. Mashkov, W. R. Austin, L. Zhang, and R. G. Leisure, “Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2,” Phys. Rev. Lett. 76, 2926–2929 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

J. Boch, F. Saigné, A. D. Touboul, S. Ducret, J.-F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel, and G. Sarrabayrouse, “Dose rate effects in bipolar oxides: competition between trap filling and recombination,” Appl. Phys. Lett. 88, 232113–232115 (2006).
[CrossRef]

IEEE Trans. Nucl. Sci. (8)

T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall, and R. L. Pease, “ELDRS in space: an updated and expanded analysis of the bipolar ELDRS experiment on MPTB,” IEEE Trans. Nucl. Sci. 50, 2328–2334 (2003).
[CrossRef]

S. Girard, J. Baggio, and J. Bisutti, “14 MeV neutron, γ-ray, and pulsed x-ray radiation-induced effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci. 53, 3750–3757 (2006).
[CrossRef]

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119 (2007).
[CrossRef]

T. Wijnands, L. K. De Jonge, J. Kuhnhenn, S. K. Hoeffgen, and U. Weinand, “Optical absorption in commercial single mode optical fibers in a high energy physics radiation field,” IEEE Trans. Nucl. Sci. 55, 2216–2222 (2008).
[CrossRef]

Y. Morita and W. Kawakami, “Dose rate effect on radiation induced attenuation of pure silica core optical fibres,” IEEE Trans. Nucl. Sci. 36, 584–590 (1989).
[CrossRef]

P. Borgermans and B. Brichard, “Kinetic models and spectral dependencies of the radiation-induced attenuation in pure silica fibers,” IEEE Trans. Nucl. Sci. 49, 1439–1445 (2002).
[CrossRef]

B. D. Evans and G. H. Sigel, “Radiation resistant fiber optic materials and waveguides,” IEEE Trans. Nucl. Sci. 22, 2462–2467 (1975).
[CrossRef]

J. Boch, F. Saigné, R. D. Schrimpf, J. R. Vaillé, L. Dusseau, and E. Lorfèvre, “Physical model for the low-dose-rate effect in bipolar devices,” IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006).
[CrossRef]

J. Appl. Phys. (1)

O. Gilard, M. Caussanel, H. Duval, G. Quadri, and F. Reynaud, “New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses,” J. Appl. Phys. 108, doc. ID 093115 (2010).
[CrossRef]

J. Lightwave Technol. (1)

H. Henschel and E. Baumann, “Effect of natural radioactivity on optical fibers of undersea cables,” J. Lightwave Technol. 14, 724–731 (1996).
[CrossRef]

Phys. Rev. B (1)

D. L. Griscom, “Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: Application to color centers in silica-based optical fibers,” Phys. Rev. B 64, doc. ID 174201 (2001).

Phys. Rev. Lett. (2)

V. A. Mashkov, W. R. Austin, L. Zhang, and R. G. Leisure, “Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2,” Phys. Rev. Lett. 76, 2926–2929 (1996).
[CrossRef]

D. L. Griscom, M. E. Gingerich, and J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
[CrossRef]

Proc. SPIE (3)

G. M. Williams, B. M. Wright, W. D. Mack, and J. Friebele, “Projecting the performance of erbium-doped fiber devices in a space radiation environment,” Proc. SPIE 3848, 271–280 (1999).

M. N. Ott, “Fibre optic cable assemblies for space flight: II. Thermal and radiation effects,” Proc. SPIE 3440, 37–46 (1998).

E. J. Friebele, K. Long, C. Askins, M. Gingerich, M. Marrone, and D. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–88 (1985).

Other (3)

A. Plonka, Dispersive Kinetics (Kluwer, 2001).

B. Brichard, A. Fernandez Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effect in erbium-doped fibers for space gyroscopes,” in OFS-16: 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information and Communication Engineers, 2003), pp. 336–339.

J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sottoms, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fibers,” presented at ICSO 2010: International Conference on Space Optics, 4–8 Oct. 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Evolution of RIA versus calculated dose rate for (a) the model described in [19] and (b) the one presented here. In (a), the chosen parameters are Np=1015cm3, A=1017cm3s1, Ap=1013cm3s1, An=1015cm3s1, and D=1017cm3. In (b), Np=0.23cm3, g=1s11/γGy1, D=10Gy, α=0.6, and τ=28.4s. Nn denotes the recombination-center density.

Fig. 2.
Fig. 2.

RIA response at 960 nm in fiber #2 of [14] (simulation parameters Np=0.23cm3, g=1s11/γGy1, γ=0.785). The solid lines correspond to the simulation results obtained using the first term of Eq. (2).

Fig. 3.
Fig. 3.

RIA measured at 1550 nm versus the dose deposit for each of the four samples. Sample 1 was irradiated at low dose rate (0.5Gy/h) during the entire experiment. Samples 2, 3, and 4 were switched from high dose rate (12Gy/h) to low dose rate at, respectively, points B, C, and D. The length of the fibers was 10 m.

Fig. 4.
Fig. 4.

Example of switching dose rate experiment simulated with the model presented in this paper (simulation parameters Np=0.23cm3, g=1h11/γGy1, τ=60h, α=0.9, γ=0.5). Crosses, squares, and stars on the overall low-dose rate curve (starting at point A) were obtained by operating horizontal translations from all the low dose rate curves issuing from points B, C, and D.

Fig. 5.
Fig. 5.

Dose-rate sensitivity of the RIA calculated using Eq. (2). Calculations were performed for Np=0.23cm3, g=1s11/γGy1, τ=35s, α=0.6, γ=0.5.

Fig. 6.
Fig. 6.

Threshold dose rate calculated according to Eq. (5) versus α.

Fig. 7.
Fig. 7.

Threshold dose rate calculated according to Eq. (5) versus Ea.

Fig. 8.
Fig. 8.

Threshold dose rate calculated according to Eq. (5) versus temperature.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dndt=Np(gD˙)γαταtα1n,
n=NpgγD˙γ1D[1H(DD˙τα1/α)]+NpταgγαD˙α1+γD1αH(DD˙τα1/α),
nNpταgγαD˙α1+γD1α.
nNpgγD˙γ1D.
D˙th=Dα1/ανeEa/kBT,

Metrics