Abstract

An optical fiber humidity sensor employing an in-house scaled TiO2-nanoparticle doped nanostructured thin film as the fiber sensing cladding and evanescent wave absorption is reported. The main objective of the present work is to achieve a throughout-linear sensor response with high sensitivity, possibly over a wide dynamic range using the simplest possible sensor geometry. In order to realize this, first, the nanostructured sensing film is synthesized over a short length of a centrally decladded straight and uniform optical fiber and then a comprehensive experimental investigation is carried out to optimize the design configuration/parameters of the nanostructured sensing film and to achieve the best possible sensor response. Much improved sensitivity of 27.1mV/%RH is observed for the optimized sensor along with a throughout-linear sensor response over a dynamic range as wide as 24% to 95%RH with an average response time of 0.01 s for humidification and 0.06 s for desiccation. In addition, the sensor exhibits a very good degree of reversibility and repeatability.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fiber-optic sensor technologies for humidity and moisture measurement,” Sensors Actuators A 144, 280–295 (2008).
    [CrossRef]
  2. Z. M. Rittersma, “Recent achievements in miniaturised humidity sensors—a review of transduction techniques,” Sensors Actuators A 96, 196–210 (2002).
    [CrossRef]
  3. F. T. S. Yu and S. Yin, Fiber Optic Sensors (Marcel Dekker, 2002).
  4. F. Mitschke, “Fiber-optic sensor for humidity,” Opt. Lett. 14, 967–969 (1989).
    [CrossRef]
  5. T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sensors Actuators B 39, 272–276 (1997).
    [CrossRef]
  6. S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sensors Actuators B 53, 91–96 (1998).
    [CrossRef]
  7. S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
    [CrossRef]
  8. A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE J. Sens. 3, 806–811 (2003).
    [CrossRef]
  9. A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
    [CrossRef]
  10. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sensors Actuators B 104, 217–222 (2005).
    [CrossRef]
  11. J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sensors Actuators B 122, 442–449 (2007).
    [CrossRef]
  12. A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sensors Actuators B 129, 106–112 (2008).
    [CrossRef]
  13. S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sensors Actuators B 147, 385–391 (2010).
    [CrossRef]
  14. C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity sensing using plastic optical fiber,” Microw. Opt. Technol. Lett. 43, 387–390 (2004).
    [CrossRef]
  15. K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors Actuators B 110, 335–341 (2005).
    [CrossRef]
  16. Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
    [CrossRef]
  17. D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
    [CrossRef]
  18. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sensors Actuators B 110, 148–156 (2005).
    [CrossRef]
  19. X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sensors Actuators B 127, 518–524 (2007).
    [CrossRef]
  20. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
    [CrossRef]
  21. J. J. Frioiat, A. Jelli, G. Poncelet, and J. Andre, “Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas,” J. Phys. Chem. 69, 2185–2197 (1965).
    [CrossRef]
  22. J. H. Anderson and G. A. Parks, “Electrical properties of silica-gel in the presence of adsorbed water,” J. Phys. Chem. 723662–3668 (1968).
    [CrossRef]
  23. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152, 259–262 (1998).
    [CrossRef]
  24. C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors Actuators B 69, 127–131 (2000).
    [CrossRef]

2010 (1)

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sensors Actuators B 147, 385–391 (2010).
[CrossRef]

2009 (1)

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

2008 (2)

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sensors Actuators B 129, 106–112 (2008).
[CrossRef]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fiber-optic sensor technologies for humidity and moisture measurement,” Sensors Actuators A 144, 280–295 (2008).
[CrossRef]

2007 (3)

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sensors Actuators B 122, 442–449 (2007).
[CrossRef]

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sensors Actuators B 127, 518–524 (2007).
[CrossRef]

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

2005 (3)

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors Actuators B 110, 335–341 (2005).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sensors Actuators B 110, 148–156 (2005).
[CrossRef]

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sensors Actuators B 104, 217–222 (2005).
[CrossRef]

2004 (2)

A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
[CrossRef]

C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity sensing using plastic optical fiber,” Microw. Opt. Technol. Lett. 43, 387–390 (2004).
[CrossRef]

2003 (2)

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE J. Sens. 3, 806–811 (2003).
[CrossRef]

2002 (1)

Z. M. Rittersma, “Recent achievements in miniaturised humidity sensors—a review of transduction techniques,” Sensors Actuators A 96, 196–210 (2002).
[CrossRef]

2000 (1)

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors Actuators B 69, 127–131 (2000).
[CrossRef]

1999 (1)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

1998 (2)

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sensors Actuators B 53, 91–96 (1998).
[CrossRef]

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152, 259–262 (1998).
[CrossRef]

1997 (1)

T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sensors Actuators B 39, 272–276 (1997).
[CrossRef]

1989 (1)

1968 (1)

J. H. Anderson and G. A. Parks, “Electrical properties of silica-gel in the presence of adsorbed water,” J. Phys. Chem. 723662–3668 (1968).
[CrossRef]

1965 (1)

J. J. Frioiat, A. Jelli, G. Poncelet, and J. Andre, “Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas,” J. Phys. Chem. 69, 2185–2197 (1965).
[CrossRef]

Adachi, K.

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sensors Actuators B 53, 91–96 (1998).
[CrossRef]

Aiyar, R. C.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sensors Actuators B 129, 106–112 (2008).
[CrossRef]

Akita, S.

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sensors Actuators B 147, 385–391 (2010).
[CrossRef]

Amalnerkar, D.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sensors Actuators B 129, 106–112 (2008).
[CrossRef]

Amano, T.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Anderson, J. H.

J. H. Anderson and G. A. Parks, “Electrical properties of silica-gel in the presence of adsorbed water,” J. Phys. Chem. 723662–3668 (1968).
[CrossRef]

Andre, J.

J. J. Frioiat, A. Jelli, G. Poncelet, and J. Andre, “Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas,” J. Phys. Chem. 69, 2185–2197 (1965).
[CrossRef]

Araujo, F. M.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

Arregui, F. J.

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sensors Actuators B 122, 442–449 (2007).
[CrossRef]

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors Actuators B 69, 127–131 (2000).
[CrossRef]

Auza, F.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE J. Sens. 3, 806–811 (2003).
[CrossRef]

Bariain, C.

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors Actuators B 69, 127–131 (2000).
[CrossRef]

Brook, T. E.

T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sensors Actuators B 39, 272–276 (1997).
[CrossRef]

Cen, K. F.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sensors Actuators B 127, 518–524 (2007).
[CrossRef]

Chan, C. C.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors Actuators B 110, 335–341 (2005).
[CrossRef]

C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity sensing using plastic optical fiber,” Microw. Opt. Technol. Lett. 43, 387–390 (2004).
[CrossRef]

Corres, J. M.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sensors Actuators B 122, 442–449 (2007).
[CrossRef]

Ferreira1, L. A.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

Frioiat, J. J.

J. J. Frioiat, A. Jelli, G. Poncelet, and J. Andre, “Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas,” J. Phys. Chem. 69, 2185–2197 (1965).
[CrossRef]

Fuke, M.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sensors Actuators B 129, 106–112 (2008).
[CrossRef]

Gaston, A.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE J. Sens. 3, 806–811 (2003).
[CrossRef]

Goicoechea, J.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

Grattan, K. T. V.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fiber-optic sensor technologies for humidity and moisture measurement,” Sensors Actuators A 144, 280–295 (2008).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sensors Actuators B 110, 148–156 (2005).
[CrossRef]

Guerrero, H.

A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
[CrossRef]

Gupta, B. D.

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152, 259–262 (1998).
[CrossRef]

Hawaldar, R.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sensors Actuators B 129, 106–112 (2008).
[CrossRef]

Herrero, A. A.

A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
[CrossRef]

Huang, X. F.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sensors Actuators B 127, 518–524 (2007).
[CrossRef]

Jelli, A.

J. J. Frioiat, A. Jelli, G. Poncelet, and J. Andre, “Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas,” J. Phys. Chem. 69, 2185–2197 (1965).
[CrossRef]

Khijwania, S. K.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sensors Actuators B 104, 217–222 (2005).
[CrossRef]

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152, 259–262 (1998).
[CrossRef]

Kulkarni, M.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sensors Actuators B 129, 106–112 (2008).
[CrossRef]

Lade, R.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sensors Actuators B 110, 148–156 (2005).
[CrossRef]

Levy, D.

A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
[CrossRef]

Liao, Y.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Liu, Y.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Lopez-Amo, M.

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors Actuators B 69, 127–131 (2000).
[CrossRef]

Lozano, I.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE J. Sens. 3, 806–811 (2003).
[CrossRef]

Mao, X.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Matias, I. R.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sensors Actuators B 122, 442–449 (2007).
[CrossRef]

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors Actuators B 69, 127–131 (2000).
[CrossRef]

Mitschke, F.

Morisawa, M.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Muto, S.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Narayanaswamy, R.

T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sensors Actuators B 39, 272–276 (1997).
[CrossRef]

Otsuki, S.

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sensors Actuators B 53, 91–96 (1998).
[CrossRef]

Parks, G. A.

J. H. Anderson and G. A. Parks, “Electrical properties of silica-gel in the presence of adsorbed water,” J. Phys. Chem. 723662–3668 (1968).
[CrossRef]

Parry, D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sensors Actuators B 110, 148–156 (2005).
[CrossRef]

Perez, F.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE J. Sens. 3, 806–811 (2003).
[CrossRef]

Poncelet, G.

J. J. Frioiat, A. Jelli, G. Poncelet, and J. Andre, “Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas,” J. Phys. Chem. 69, 2185–2197 (1965).
[CrossRef]

Powell, B. D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sensors Actuators B 110, 148–156 (2005).
[CrossRef]

Rahardjo, H.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors Actuators B 110, 335–341 (2005).
[CrossRef]

C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity sensing using plastic optical fiber,” Microw. Opt. Technol. Lett. 43, 387–390 (2004).
[CrossRef]

Rittersma, Z. M.

Z. M. Rittersma, “Recent achievements in miniaturised humidity sensors—a review of transduction techniques,” Sensors Actuators A 96, 196–210 (2002).
[CrossRef]

Santos, J. L.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

Sasaki, H.

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sensors Actuators B 147, 385–391 (2010).
[CrossRef]

Seki, A.

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sensors Actuators B 147, 385–391 (2010).
[CrossRef]

Sevilla, J.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE J. Sens. 3, 806–811 (2003).
[CrossRef]

Sheng, D. R.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sensors Actuators B 127, 518–524 (2007).
[CrossRef]

Singh, J. P.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sensors Actuators B 104, 217–222 (2005).
[CrossRef]

Srinivasan, K. L.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sensors Actuators B 104, 217–222 (2005).
[CrossRef]

Sun, T.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fiber-optic sensor technologies for humidity and moisture measurement,” Sensors Actuators A 144, 280–295 (2008).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sensors Actuators B 110, 148–156 (2005).
[CrossRef]

Suzuki, O.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Taguchi, T.

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sensors Actuators B 53, 91–96 (1998).
[CrossRef]

Taib, M. N.

T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sensors Actuators B 39, 272–276 (1997).
[CrossRef]

Tan, K. M.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors Actuators B 110, 335–341 (2005).
[CrossRef]

C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity sensing using plastic optical fiber,” Microw. Opt. Technol. Lett. 43, 387–390 (2004).
[CrossRef]

Tay, C. M.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors Actuators B 110, 335–341 (2005).
[CrossRef]

C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity sensing using plastic optical fiber,” Microw. Opt. Technol. Lett. 43, 387–390 (2004).
[CrossRef]

Tjin, S. C.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors Actuators B 110, 335–341 (2005).
[CrossRef]

C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity sensing using plastic optical fiber,” Microw. Opt. Technol. Lett. 43, 387–390 (2004).
[CrossRef]

Tu, D.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Viegas, D.

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

Vijayan, A.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sensors Actuators B 129, 106–112 (2008).
[CrossRef]

Wang, L.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Watanabe, K.

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sensors Actuators B 147, 385–391 (2010).
[CrossRef]

Yeo, T. L.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fiber-optic sensor technologies for humidity and moisture measurement,” Sensors Actuators A 144, 280–295 (2008).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sensors Actuators B 110, 148–156 (2005).
[CrossRef]

Yin, S.

F. T. S. Yu and S. Yin, Fiber Optic Sensors (Marcel Dekker, 2002).

Yu, F. T. S.

F. T. S. Yu and S. Yin, Fiber Optic Sensors (Marcel Dekker, 2002).

Zhang, M.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Zhou, H.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sensors Actuators B 127, 518–524 (2007).
[CrossRef]

IEEE J. Sens. (2)

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE J. Sens. 3, 806–811 (2003).
[CrossRef]

A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

J. Phys. Chem. (2)

J. J. Frioiat, A. Jelli, G. Poncelet, and J. Andre, “Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas,” J. Phys. Chem. 69, 2185–2197 (1965).
[CrossRef]

J. H. Anderson and G. A. Parks, “Electrical properties of silica-gel in the presence of adsorbed water,” J. Phys. Chem. 723662–3668 (1968).
[CrossRef]

Meas. Sci. Technol. (2)

D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira1, F. M. Araujo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).
[CrossRef]

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

C. M. Tay, K. M. Tan, S. C. Tjin, C. C. Chan, and H. Rahardjo, “Humidity sensing using plastic optical fiber,” Microw. Opt. Technol. Lett. 43, 387–390 (2004).
[CrossRef]

Opt. Commun. (1)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152, 259–262 (1998).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

Sensors Actuators A (2)

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fiber-optic sensor technologies for humidity and moisture measurement,” Sensors Actuators A 144, 280–295 (2008).
[CrossRef]

Z. M. Rittersma, “Recent achievements in miniaturised humidity sensors—a review of transduction techniques,” Sensors Actuators A 96, 196–210 (2002).
[CrossRef]

Sensors Actuators B (10)

T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sensors Actuators B 39, 272–276 (1997).
[CrossRef]

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sensors Actuators B 53, 91–96 (1998).
[CrossRef]

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sensors Actuators B 104, 217–222 (2005).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sensors Actuators B 122, 442–449 (2007).
[CrossRef]

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sensors Actuators B 129, 106–112 (2008).
[CrossRef]

S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sensors Actuators B 147, 385–391 (2010).
[CrossRef]

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sensors Actuators B 110, 335–341 (2005).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sensors Actuators B 110, 148–156 (2005).
[CrossRef]

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sensors Actuators B 127, 518–524 (2007).
[CrossRef]

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors Actuators B 69, 127–131 (2000).
[CrossRef]

Other (1)

F. T. S. Yu and S. Yin, Fiber Optic Sensors (Marcel Dekker, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

TEM image of the prepared TIO2 nanoparticles.

Fig. 2.
Fig. 2.

Experimental setup for sensor characterization.

Fig. 3.
Fig. 3.

Time variation of a commercial humidity sensor and the fiber-optic humidity sensor [three-dip coated probe of 9%(v/v) nanoparticle concentration in sol].

Fig. 4.
Fig. 4.

Experimentally observed sensor responses of two-dip, three-dip, and four-dip probes with 6%(v/v) nanoparticle concentration in sol.

Fig. 5.
Fig. 5.

Experimentally observed sensor responses of two-dip, three-dip, and four-dip probes with 9%(v/v) nanoparticle concentration in sol.

Fig. 6.
Fig. 6.

Experimentally observed sensor responses of two-dip, three-dip, and four-dip probes with 12%(v/v) nanoparticle concentration in sol.

Fig. 7.
Fig. 7.

Sensor-response compression three-dip coated probes with 6%, 9%, and 12%(v/v) nanoparticle concentration in sol.

Fig. 8.
Fig. 8.

Time response behavior and the repeatability test for the optimized fiber-optic humidity sensor against cyclic humidity perturbations.

Tables (1)

Tables Icon

Table 1. Response Comparison of Reported Sensor with Other Reported Sensors

Metrics