Abstract

An optical fiber humidity sensor employing an in-house scaled TiO2-nanoparticle doped nanostructured thin film as the fiber sensing cladding and evanescent wave absorption is reported. The main objective of the present work is to achieve a throughout-linear sensor response with high sensitivity, possibly over a wide dynamic range using the simplest possible sensor geometry. In order to realize this, first, the nanostructured sensing film is synthesized over a short length of a centrally decladded straight and uniform optical fiber and then a comprehensive experimental investigation is carried out to optimize the design configuration/parameters of the nanostructured sensing film and to achieve the best possible sensor response. Much improved sensitivity of 27.1mV/%RH is observed for the optimized sensor along with a throughout-linear sensor response over a dynamic range as wide as 24% to 95%RH with an average response time of 0.01 s for humidification and 0.06 s for desiccation. In addition, the sensor exhibits a very good degree of reversibility and repeatability.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription