Abstract

We design a 10 PW class laser system with a hybrid amplification chain. The hybrid amplification chain with a total gain of 104 composed of Ti:chrysoberyl amplifiers and Ti:sapphire amplifiers. The ability of this hybrid amplifier chain to control gain narrowing and gain saturation is demonstrated by numerical simulations.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
    [CrossRef]
  2. J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68, 1527–1530 (1992).
    [CrossRef]
  3. A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993).
    [CrossRef]
  4. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
    [CrossRef]
  5. J. D. Kmetec, J. J. Macklin, and J. F. Young, “0.5-TW, 125-fs Ti: sapphire laser,” Opt. Lett. 16, 1001–1003 (1991).
    [CrossRef]
  6. A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33, 1905–1907 (2008).
    [CrossRef]
  7. J. S. Coe, P. Maine, and P. Bado, “Regenerative amplification of picosecond pulses in Nd:YLF: gain narrowing and gain saturation,” J. Opt. Soc. Am. B 5, 2560–2563 (1988).
    [CrossRef]
  8. C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti: sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
    [CrossRef]
  9. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, “100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate,” Opt. Lett. 23, 1468–1470 (1998).
    [CrossRef]
  10. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, M. Tanoue, A. Akutsu, S. Kondo, S. Kanazawa, H. Okada, T. Motomura, H. Daido, T. Kimura, and T. Tajima, “High-intensity laser pulse generation using a nonlinear preamplifier in a Ti:sapphire laser system,” Opt. Lett. 33, 645–647 (2008).
    [CrossRef]
  11. M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0.85-PW, 33-fs Ti:sapphire laser,” Opt. Lett. 28, 1594–1596 (2003).
    [CrossRef]
  12. X. Liang, Y. Leng, C. Wang, C. Li, L. Lin, B. Zhao, Y. Jiang, X. Lu, M. Hu, C. Zhang, H. Lu, D. Yin, Y. Jiang, X. Lu, H. Wei, J. Zhu, R. Li, and Z. Xu, “Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier,” Opt. Express 15, 15335–15341 (2007).
    [CrossRef]
  13. F. Giambruno, C. Radier, G. Rey, and G. Chériaux, “Design of a 10 PW (150  J/15  fs) peak power laser system with Ti:sapphire medium through spectral control,” Appl. Opt. 50, 2617–2621 (2011).
    [CrossRef]
  14. E. V. Pestryakov, V. I. Trunov, and A. I. Alimpiev, “Generation of tunable radiation in a BeAI2O4∶Ti3laser subjected to pulsed coherent pumping at a high repetition frequency,” Sov. J. Quantum Electron. 17, 585–586 (1987).
    [CrossRef]
  15. A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
    [CrossRef]
  16. N. Sarukura, Y. Segawa, and K. Yamagishi, “Ti:chrysoberyl as a high-saturation-fluence amplification medium for Ti:sapphire lasers,” in OSA Proceedings on Advanced Solid-State Lasers (Optical Society of America, 1993).
  17. Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
    [CrossRef]
  18. A. Sugimoto, Y. Segawa, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, and Y. Yamaguchi, “Spectroscopic properties of Ti3+-doped BeAl2O4,” J. Opt. Soc. Am. B 6, 2334–2337 (1989).
    [CrossRef]
  19. E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31, 689–696 (2001).
    [CrossRef]
  20. A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Broadband characterization of the nonlinear refractive index of sapphire,” in IEEE LEOS Annual Meeting (IEEE, 2003), pp. 405–406.

2011

2008

2007

2003

2001

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31, 689–696 (2001).
[CrossRef]

1998

1996

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti: sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
[CrossRef]

1994

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
[CrossRef]

1993

A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993).
[CrossRef]

1992

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68, 1527–1530 (1992).
[CrossRef]

1991

1989

1988

1987

Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
[CrossRef]

E. V. Pestryakov, V. I. Trunov, and A. I. Alimpiev, “Generation of tunable radiation in a BeAI2O4∶Ti3laser subjected to pulsed coherent pumping at a high repetition frequency,” Sov. J. Quantum Electron. 17, 585–586 (1987).
[CrossRef]

1986

A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
[CrossRef]

Aitchison, J. S.

A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Broadband characterization of the nonlinear refractive index of sapphire,” in IEEE LEOS Annual Meeting (IEEE, 2003), pp. 405–406.

Akahane, Y.

Akutsu, A.

Alimpiev, A. I.

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31, 689–696 (2001).
[CrossRef]

E. V. Pestryakov, V. I. Trunov, and A. I. Alimpiev, “Generation of tunable radiation in a BeAI2O4∶Ti3laser subjected to pulsed coherent pumping at a high repetition frequency,” Sov. J. Quantum Electron. 17, 585–586 (1987).
[CrossRef]

A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
[CrossRef]

Anzai, Y.

A. Sugimoto, Y. Segawa, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, and Y. Yamaguchi, “Spectroscopic properties of Ti3+-doped BeAl2O4,” J. Opt. Soc. Am. B 6, 2334–2337 (1989).
[CrossRef]

Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
[CrossRef]

Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
[CrossRef]

Aoyama, M.

Backus, S.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Bado, P.

Balcou, P.

A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993).
[CrossRef]

Bartels, A.

Brown, G. S.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68, 1527–1530 (1992).
[CrossRef]

Bukin, G. V.

A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
[CrossRef]

Campbell, E. M.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
[CrossRef]

Chebotaev, V. P.

A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
[CrossRef]

Chériaux, G.

Coe, J. S.

Curley, P.

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti: sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
[CrossRef]

Daido, H.

Diddams, S. A.

Durfee, C. G.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Giambruno, F.

Glinsky, M. E.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
[CrossRef]

Gordon, C. L.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68, 1527–1530 (1992).
[CrossRef]

Hammer, J.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
[CrossRef]

Harris, S. E.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68, 1527–1530 (1992).
[CrossRef]

Heinecke, D.

Hu, M.

Inoue, N.

Jiang, Y.

Kanazawa, S.

Kapteyn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Kase, T.

Kim, P. H.

A. Sugimoto, Y. Segawa, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, and Y. Yamaguchi, “Spectroscopic properties of Ti3+-doped BeAl2O4,” J. Opt. Soc. Am. B 6, 2334–2337 (1989).
[CrossRef]

Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
[CrossRef]

Kimura, T.

Kiriyama, H.

Kmetec, J. D.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68, 1527–1530 (1992).
[CrossRef]

J. D. Kmetec, J. J. Macklin, and J. F. Young, “0.5-TW, 125-fs Ti: sapphire laser,” Opt. Lett. 16, 1001–1003 (1991).
[CrossRef]

Kondo, S.

Kruer, W. L.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
[CrossRef]

L’Huillier, A.

A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993).
[CrossRef]

Le Blanc, C.

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti: sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
[CrossRef]

Lemoff, B. E.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68, 1527–1530 (1992).
[CrossRef]

Leng, Y.

Li, C.

Li, R.

Liang, X.

Lin, L.

Lu, H.

Lu, X.

Ma, J.

Macklin, J. J.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68, 1527–1530 (1992).
[CrossRef]

J. D. Kmetec, J. J. Macklin, and J. F. Young, “0.5-TW, 125-fs Ti: sapphire laser,” Opt. Lett. 16, 1001–1003 (1991).
[CrossRef]

Maine, P.

Major, A.

A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Broadband characterization of the nonlinear refractive index of sapphire,” in IEEE LEOS Annual Meeting (IEEE, 2003), pp. 405–406.

Matrosov, V. N.

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31, 689–696 (2001).
[CrossRef]

A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
[CrossRef]

Matsuoka, S.

Mori, M.

Motomura, T.

Murnane, M. M.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Nakai, Y.

Namba, S.

A. Sugimoto, Y. Segawa, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, and Y. Yamaguchi, “Spectroscopic properties of Ti3+-doped BeAl2O4,” J. Opt. Soc. Am. B 6, 2334–2337 (1989).
[CrossRef]

Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
[CrossRef]

Nikolakakos, I.

A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Broadband characterization of the nonlinear refractive index of sapphire,” in IEEE LEOS Annual Meeting (IEEE, 2003), pp. 405–406.

Okada, H.

Perry, M. D.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
[CrossRef]

Pestryakov, E. V.

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31, 689–696 (2001).
[CrossRef]

E. V. Pestryakov, V. I. Trunov, and A. I. Alimpiev, “Generation of tunable radiation in a BeAI2O4∶Ti3laser subjected to pulsed coherent pumping at a high repetition frequency,” Sov. J. Quantum Electron. 17, 585–586 (1987).
[CrossRef]

A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
[CrossRef]

Radier, C.

Rey, G.

Salin, F.

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti: sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
[CrossRef]

Sarukura, N.

N. Sarukura, Y. Segawa, and K. Yamagishi, “Ti:chrysoberyl as a high-saturation-fluence amplification medium for Ti:sapphire lasers,” in OSA Proceedings on Advanced Solid-State Lasers (Optical Society of America, 1993).

Segawa, Y.

A. Sugimoto, Y. Segawa, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, and Y. Yamaguchi, “Spectroscopic properties of Ti3+-doped BeAl2O4,” J. Opt. Soc. Am. B 6, 2334–2337 (1989).
[CrossRef]

N. Sarukura, Y. Segawa, and K. Yamagishi, “Ti:chrysoberyl as a high-saturation-fluence amplification medium for Ti:sapphire lasers,” in OSA Proceedings on Advanced Solid-State Lasers (Optical Society of America, 1993).

Segawa, Y. Y.

Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
[CrossRef]

Shimomura, T.

Smith, P. W. E.

A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Broadband characterization of the nonlinear refractive index of sapphire,” in IEEE LEOS Annual Meeting (IEEE, 2003), pp. 405–406.

Solntsev, V. P.

A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
[CrossRef]

Sugimoto, A.

A. Sugimoto, Y. Segawa, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, and Y. Yamaguchi, “Spectroscopic properties of Ti3+-doped BeAl2O4,” J. Opt. Soc. Am. B 6, 2334–2337 (1989).
[CrossRef]

Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
[CrossRef]

Tabak, M.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
[CrossRef]

Tajima, T.

Takuma, H.

Tanoue, M.

Trunov, V. I.

E. V. Pestryakov, V. I. Trunov, and A. I. Alimpiev, “Generation of tunable radiation in a BeAI2O4∶Ti3laser subjected to pulsed coherent pumping at a high repetition frequency,” Sov. J. Quantum Electron. 17, 585–586 (1987).
[CrossRef]

A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
[CrossRef]

Tsvetkov, E. G.

A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
[CrossRef]

Ueda, H.

Wang, C.

Wei, H.

Wilks, S. C.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
[CrossRef]

Woodworth, J.

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
[CrossRef]

Xu, Z.

Yamagishi, K.

A. Sugimoto, Y. Segawa, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, and Y. Yamaguchi, “Spectroscopic properties of Ti3+-doped BeAl2O4,” J. Opt. Soc. Am. B 6, 2334–2337 (1989).
[CrossRef]

Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
[CrossRef]

N. Sarukura, Y. Segawa, and K. Yamagishi, “Ti:chrysoberyl as a high-saturation-fluence amplification medium for Ti:sapphire lasers,” in OSA Proceedings on Advanced Solid-State Lasers (Optical Society of America, 1993).

Yamaguchi, Y.

A. Sugimoto, Y. Segawa, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, and Y. Yamaguchi, “Spectroscopic properties of Ti3+-doped BeAl2O4,” J. Opt. Soc. Am. B 6, 2334–2337 (1989).
[CrossRef]

Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
[CrossRef]

Yamakawa, K.

Yin, D.

Yoshino, F.

A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Broadband characterization of the nonlinear refractive index of sapphire,” in IEEE LEOS Annual Meeting (IEEE, 2003), pp. 405–406.

Young, J. F.

Zhang, C.

Zhao, B.

Zhu, J.

Appl. Opt.

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y. Y. Segawa, A. Sugimoto, P. H. Kim, S. Namba, K. Yamagishi, Y. Anzai, Y. Anzai, and Y. Yamaguchi, “Optical properties and lasing of Ti3+ doped BeAl2O4,” Jpn. J. Appl. Phys. 26, L291–L292 (1987).
[CrossRef]

Opt. Commun.

C. Le Blanc, P. Curley, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti: sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Plasmas

M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).
[CrossRef]

Phys. Rev. Lett.

J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68, 1527–1530 (1992).
[CrossRef]

A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993).
[CrossRef]

Quantum Electron.

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, “Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions,” Quantum Electron. 31, 689–696 (2001).
[CrossRef]

Rev. Sci. Instrum.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Sov. J. Quantum Electron.

E. V. Pestryakov, V. I. Trunov, and A. I. Alimpiev, “Generation of tunable radiation in a BeAI2O4∶Ti3laser subjected to pulsed coherent pumping at a high repetition frequency,” Sov. J. Quantum Electron. 17, 585–586 (1987).
[CrossRef]

A. I. Alimpiev, G. V. Bukin, V. N. Matrosov, E. V. Pestryakov, V. P. Solntsev, V. I. Trunov, E. G. Tsvetkov, and V. P. Chebotaev, “Tunable BeAI2O4∶Ti3+ laser,” Sov. J. Quantum Electron. 16, 579–580 (1986).
[CrossRef]

Other

N. Sarukura, Y. Segawa, and K. Yamagishi, “Ti:chrysoberyl as a high-saturation-fluence amplification medium for Ti:sapphire lasers,” in OSA Proceedings on Advanced Solid-State Lasers (Optical Society of America, 1993).

A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Broadband characterization of the nonlinear refractive index of sapphire,” in IEEE LEOS Annual Meeting (IEEE, 2003), pp. 405–406.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Photoluminescence spectra of the Ti:Ch with various directions of polarization; (b) Combined spectrum of Ti:Sa and Ti:Ch with Ea.

Fig. 2.
Fig. 2.

Spectral evolution along the hybrid amplification chain.

Fig. 3.
Fig. 3.

Simulated amplified spectra with different k.

Fig. 4.
Fig. 4.

Simulated FWHM of the amplified spectrum with different input bandwidths.

Fig. 5.
Fig. 5.

Geometry of a Ti:Ch amplifier.

Fig. 6.
Fig. 6.

Amplified fluences versus pass number for different pump fluences.

Fig. 7.
Fig. 7.

Comparison of the simulated amplified spectrum with Ti:Sa amplifiers and Ti:Ch amplifiers (with a total net gain of 100).

Fig. 8.
Fig. 8.

Schematic of the laser system design.

Fig. 9.
Fig. 9.

(a) Spectral evolution along the amplification chain, (b) transform-limited pulse width.

Metrics