Abstract

Classical and quantum formulations are used to estimate Rayleigh scattering within lidar signals. Within the classical approach, three scenarios are used to characterize atmospheric molecular composition: 2-component atmosphere (N2 and O2), 4-component atmosphere (N2, O2, Ar, and CO2), and 5-component atmosphere (N2, O2, Ar, CO2, and water vapor). First, analysis focuses on Rayleigh scattering, showing the relative difference between the three scenarios within classical approach. The relative difference in molecular scattering between 2(4)-component atmosphere and 5-component atmosphere is below 1%. The second analysis focuses on the lidar retrieval of aerosol backscatter and extinction coefficients showing the effect of different molecular formulations. A relative difference of ±3% was found between the molecular formulation of 2-component atmosphere and the molecular formulation of 5-component atmosphere. Consideration of the Raman rotational lines blocked by the interference filter is important for the elastic channels, but of little significance in the N2 Raman channel. For lidar retrieval of aerosol profiles, the 5-component approximation is the best when the water vapor profile is known, but 2-component is still adequate and quite accurate when water vapor is only poorly known.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Freudenthaler, Meteorological Institut of the Munich University, Germany (personal communication, 2010).
  2. A. T. Young, “Rayleigh scattering,” Phys. Today 35(1), 42–48 (1982).
    [CrossRef]
  3. D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
    [CrossRef]
  4. C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
    [CrossRef]
  5. R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
    [CrossRef]
  6. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999).
    [CrossRef]
  7. W. L. Eberhard, “Correct equations and common approximations for calculating Rayleigh scatter in pure gases and mixtures and evaluation of differences,” Appl. Opt. 49, 1116–1130 (2010).
    [CrossRef]
  8. V. Tomasi, V. Vitale, B. Petkov, A. Lupi, and A. Cacciari, “Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres,” Appl. Opt. 44, 3320–3341 (2005).
    [CrossRef]
  9. L. V. King, “On the complex anisotropic molecule in relation to the dispersion and scattering of light,” Proc. R. Soc. London Ser. A104, 333–357 (1923).
  10. M. Adam, “Notes on temperature-dependent lidar equations,” J. Atmos. Ocean. Technol. 26, 1021–1039 (2009).
    [CrossRef]
  11. K. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
    [CrossRef]
  12. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996).
    [CrossRef]
  13. M. L. Salby, Fundamentals of Atmospheric Physics (Academic, 1996).
  14. K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
    [CrossRef]
  15. U. Wandinger, “Raman lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241–272.
  16. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef]
  17. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [CrossRef]
  18. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
    [CrossRef]
  19. D. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
    [CrossRef]
  20. T. Sakai, T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, “Comparisons of Raman lidar measurement of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan,” J. Atmos. Ocean. Technol. 24, 1407–1423(2007).
    [CrossRef]
  21. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009).
    [CrossRef]
  22. M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
    [CrossRef]
  23. N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).
  24. M. Adam, “Notes on Rayleigh scattering in lidar signals,” 25th ILRC, St. Petersburg, Russia (2010), paper S01O-05.
  25. A. Wexler, “Vapor pressure formulation for water in the range 0 to 100 °C. A revision,” J. Res. Natl. Bur. Stand. 80A, 775–785 (1976).
  26. A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. A 259, 424–429 (1960).
    [CrossRef]
  27. A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9, 432–434 (1973).
    [CrossRef]
  28. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773(1995).
    [CrossRef]
  29. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadembosch, J. A. Rodriguez, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977–989 (2004).
    [CrossRef]
  30. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt. 43, 5370–5385 (2004).
    [CrossRef]
  31. A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere,” C. Weitkamp, ed. (Springer, 2005), pp. 273–305.

2010 (2)

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

W. L. Eberhard, “Correct equations and common approximations for calculating Rayleigh scatter in pure gases and mixtures and evaluation of differences,” Appl. Opt. 49, 1116–1130 (2010).
[CrossRef]

2009 (3)

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009).
[CrossRef]

M. Adam, “Notes on temperature-dependent lidar equations,” J. Atmos. Ocean. Technol. 26, 1021–1039 (2009).
[CrossRef]

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

2007 (1)

T. Sakai, T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, “Comparisons of Raman lidar measurement of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan,” J. Atmos. Ocean. Technol. 24, 1407–1423(2007).
[CrossRef]

2005 (1)

2004 (2)

2001 (2)

C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
[CrossRef]

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
[CrossRef]

1999 (2)

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999).
[CrossRef]

D. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
[CrossRef]

1996 (1)

1995 (1)

1990 (1)

1985 (1)

1984 (2)

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef]

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[CrossRef]

1982 (1)

A. T. Young, “Rayleigh scattering,” Phys. Today 35(1), 42–48 (1982).
[CrossRef]

1976 (1)

A. Wexler, “Vapor pressure formulation for water in the range 0 to 100 °C. A revision,” J. Res. Natl. Bur. Stand. 80A, 775–785 (1976).

1973 (1)

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9, 432–434 (1973).
[CrossRef]

1966 (1)

K. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

1960 (1)

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. A 259, 424–429 (1960).
[CrossRef]

Abjean, R.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9, 432–434 (1973).
[CrossRef]

Adam, M.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

M. Adam, “Notes on temperature-dependent lidar equations,” J. Atmos. Ocean. Technol. 26, 1021–1039 (2009).
[CrossRef]

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

M. Adam, “Notes on Rayleigh scattering in lidar signals,” 25th ILRC, St. Petersburg, Russia (2010), paper S01O-05.

Amiridis, V.

Amodeo, A.

Ansmann, A.

Barnet, C. D.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Bates, D. R.

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[CrossRef]

Behrendt, A.

A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere,” C. Weitkamp, ed. (Springer, 2005), pp. 273–305.

Bideau-Mehu, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9, 432–434 (1973).
[CrossRef]

Böckmann, C.

Bodhaine, B. A.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999).
[CrossRef]

Boselli, A.

Bösenberg, J.

Bucholtz, A.

Cacciari, A.

Caron, J.

Cavalli, F.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

Ciddor, P. E.

Connell, R.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Dalgarno, A.

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. A 259, 424–429 (1960).
[CrossRef]

De Tomasi, F.

Delaval, A.

Dell’Acqua, A.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

Demoz, B. B.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Douglas, K.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

Durand, Y.

Dutton, E. G.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999).
[CrossRef]

Eberhard, W. L.

Edlen, K.

K. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Fernald, F. G.

Fitzgibbon, J.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Forkey, J. N.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
[CrossRef]

Freudenthaler, V.

V. Freudenthaler, Meteorological Institut of the Munich University, Germany (personal communication, 2010).

Frioud, M.

Gambacorta, A.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Grassi, F.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

Gruening, C.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

Guern, Y.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9, 432–434 (1973).
[CrossRef]

Hågård, A.

Herman, R. L.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Horvat, M.

Hostetler, C. A.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Hunt, W. H.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Iarlori, M.

Jensen, N. R.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

Johannin-Gilles, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9, 432–434 (1973).
[CrossRef]

Joseph, E.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

King, L. V.

L. V. King, “On the complex anisotropic molecule in relation to the dispersion and scattering of light,” Proc. R. Soc. London Ser. A104, 333–357 (1923).

Kingston, A. E.

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. A 259, 424–429 (1960).
[CrossRef]

Klett, J. D.

Komguem, L.

Kreipl, S.

Kuehn, R. E.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Larchevêque, G.

Lee, K.-P.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Lempert, W. R.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
[CrossRef]

Liu, Z.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Lupi, A.

Martins Dos Santos, S.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

Matsumura, T.

T. Sakai, T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, “Comparisons of Raman lidar measurement of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan,” J. Atmos. Ocean. Technol. 24, 1407–1423(2007).
[CrossRef]

Matthias, V.

Miles, R. B.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
[CrossRef]

Miloshevich, L. M.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Nagai, T.

T. Sakai, T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, “Comparisons of Raman lidar measurement of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan,” J. Atmos. Ocean. Technol. 24, 1407–1423(2007).
[CrossRef]

Nakazato, M.

T. Sakai, T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, “Comparisons of Raman lidar measurement of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan,” J. Atmos. Ocean. Technol. 24, 1407–1423(2007).
[CrossRef]

Orikasa, N.

T. Sakai, T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, “Comparisons of Raman lidar measurement of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan,” J. Atmos. Ocean. Technol. 24, 1407–1423(2007).
[CrossRef]

Pandolfi, M.

Papayannis, A.

Pappalardo, G.

Petkov, B.

Powell, K. A.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Putaud, J.-P.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

Riebesell, M.

Rocadembosch, F.

Rocadenbosch, F.

Rodriguez, J. A.

Rogers, R. R.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Roux, D.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

Sakai, T.

T. Sakai, T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, “Comparisons of Raman lidar measurement of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan,” J. Atmos. Ocean. Technol. 24, 1407–1423(2007).
[CrossRef]

Salby, M. L.

M. L. Salby, Fundamentals of Atmospheric Physics (Academic, 1996).

Scheeren, H. A.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

Schneider, J.

Shcherbakov, V.

She, C.-Y.

Shephard, M. W.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Shoji, Y.

T. Sakai, T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, “Comparisons of Raman lidar measurement of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan,” J. Atmos. Ocean. Technol. 24, 1407–1423(2007).
[CrossRef]

Slusser, J. R.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999).
[CrossRef]

Tomasi, V.

Trepte, C. R.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Vaughan, M. A.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Venable, D. D.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Vitale, V.

Wandinger, U.

Wang, X.

Wei, J.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Weitkamp, C.

Wexler, A.

A. Wexler, “Vapor pressure formulation for water in the range 0 to 100 °C. A revision,” J. Res. Natl. Bur. Stand. 80A, 775–785 (1976).

Whiteman, D.

Whiteman, D. N.

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

Wiegner, M.

Winker, D. M.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Wood, N. B.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999).
[CrossRef]

Young, A. T.

A. T. Young, “Rayleigh scattering,” Phys. Today 35(1), 42–48 (1982).
[CrossRef]

Young, S. A.

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

Appl. Opt. (11)

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef]

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
[CrossRef]

D. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
[CrossRef]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773(1995).
[CrossRef]

P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996).
[CrossRef]

C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
[CrossRef]

C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadembosch, J. A. Rodriguez, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977–989 (2004).
[CrossRef]

G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt. 43, 5370–5385 (2004).
[CrossRef]

V. Tomasi, V. Vitale, B. Petkov, A. Lupi, and A. Cacciari, “Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres,” Appl. Opt. 44, 3320–3341 (2005).
[CrossRef]

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009).
[CrossRef]

W. L. Eberhard, “Correct equations and common approximations for calculating Rayleigh scatter in pure gases and mixtures and evaluation of differences,” Appl. Opt. 49, 1116–1130 (2010).
[CrossRef]

J. Atmos. Ocean. Technol. (5)

M. Adam, “Notes on temperature-dependent lidar equations,” J. Atmos. Ocean. Technol. 26, 1021–1039 (2009).
[CrossRef]

K. A. Powell, C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.-P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young, and D. M. Winker, “CALIPSO Lidar caibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel,” J. Atmos. Ocean. Technol. 26, 2015–2033 (2009).
[CrossRef]

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999).
[CrossRef]

M. Adam, B. B. Demoz, D. N. Whiteman, D. D. Venable, E. Joseph, A. Gambacorta, J. Wei, M. W. Shephard, L. M. Miloshevich, C. D. Barnet, R. L. Herman, J. Fitzgibbon, and R. Connell, “Water vapor measurements by Howard University Raman lidar during the WAVES 2006 campaign,” J. Atmos. Ocean. Technol. 27, 42–60 (2010).
[CrossRef]

T. Sakai, T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, “Comparisons of Raman lidar measurement of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan,” J. Atmos. Ocean. Technol. 24, 1407–1423(2007).
[CrossRef]

J. Res. Natl. Bur. Stand. (1)

A. Wexler, “Vapor pressure formulation for water in the range 0 to 100 °C. A revision,” J. Res. Natl. Bur. Stand. 80A, 775–785 (1976).

Meas. Sci. Technol. (1)

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
[CrossRef]

Metrologia (1)

K. Edlen, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Opt. Commun. (1)

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9, 432–434 (1973).
[CrossRef]

Opt. Lett. (1)

Phys. Today (1)

A. T. Young, “Rayleigh scattering,” Phys. Today 35(1), 42–48 (1982).
[CrossRef]

Planet. Space Sci. (1)

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[CrossRef]

Proc. R. Soc. A (1)

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. R. Soc. A 259, 424–429 (1960).
[CrossRef]

Other (7)

A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere,” C. Weitkamp, ed. (Springer, 2005), pp. 273–305.

N. R. Jensen, C. Gruening, M. Adam, F. Cavalli, F. Grassi, A. Dell’Acqua, S. Martins Dos Santos, H. A. Scheeren, K. Douglas, D. Roux, and J.-P. Putaud, “JRC Ispra EMEP—GAW regional station for atmospheric research, 2010 report,” http://publications.jrc.ec.europa.eu/repository/ , EUR report, in preparation (2011).

M. Adam, “Notes on Rayleigh scattering in lidar signals,” 25th ILRC, St. Petersburg, Russia (2010), paper S01O-05.

L. V. King, “On the complex anisotropic molecule in relation to the dispersion and scattering of light,” Proc. R. Soc. London Ser. A104, 333–357 (1923).

M. L. Salby, Fundamentals of Atmospheric Physics (Academic, 1996).

V. Freudenthaler, Meteorological Institut of the Munich University, Germany (personal communication, 2010).

U. Wandinger, “Raman lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241–272.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

(a) T. (b) RH. (c) WVMR measured at 31.8 m a.g.l. at Howard University Beltsville site (39 °N, 76.9 °W), 2006.

Fig. 2.
Fig. 2.

σm as retrieved using classical approach for the three atmospheric composition scenarios (2, 4, and 5-component molecular atmosphere) for each selected wavelength. Note that the three scenarios (for each wavelength) are indistinguishable.

Fig. 3.
Fig. 3.

(a) The relative difference for σm between 2-component molecular atmosphere (σm,CA,2c) and 5-component molecular atmosphere (σm,CA,5c) for each selected wavelength (legend). (b) The relative difference for σm between 4-component molecular atmosphere (σm,CA,4c) and 5-component molecular atmosphere for each selected wavelength. Calculations are performed using classical approach (CA).

Fig. 4.
Fig. 4.

Mean and standard deviation of σm relative difference between 2(4)-component molecular atmosphere (σm,CA,2(4)c) and 5-component molecular atmosphere (σm,CA,5c) versus wavelength. The circles and the squares represent the mean values while the error bars represent the standard deviation. Calculations are performed using classical approach.

Fig. 5.
Fig. 5.

(a) T. (b) RH. (c) WVMR for 05.8.2006 (06:01 UTC launch time) as measured during the radiosonde profiling.

Fig. 6.
Fig. 6.

σm versus altitude retrieved for the three scenarios (2, 4, and 5-component molecular atmosphere) for each selected wavelength (05.08.2006). Note that the three scenarios (for each wavelength) are indistinguishable. Calculations are performed using classical approach.

Fig. 7.
Fig. 7.

(a) Relative difference for σm (shown in Fig. 6) between 2-component molecular atmosphere CA (σm,CA,2c) and 5-component molecular atmosphere CA (σm,CA,5c) for each selected wavelength (legend). (b) The relative difference for σm between 4-component molecular atmosphere CA (σm,CA,4c) and 5-component molecular atmosphere CA for each selected wavelength.

Fig. 8.
Fig. 8.

(a) Temperature, (b) temperature correction functions FR(T) for Rayleigh channel, and (c) FN(T) for N2 channel. Thin lines correspond to 04.08.2006 04-07 UTC and thick lines correspond to 05.08.2006 04-07 UTC.

Fig. 9.
Fig. 9.

(a) Relative difference between σm using 2(4)-component molecular atmosphere CA and σm using 5-component molecular atmosphere CA. Profiles correspond to 354.72 nm. (b) WVMR profile. Thin lines correspond to 04.08.2006 04-07 UTC and thick lines correspond to 05.08.2006 04-07 UTC.

Fig. 10.
Fig. 10.

(a) Aerosol backscatter coefficient βp retrieved from elastic channel [use βm CA 5-component molecular atmosphere, FR(T) applied]. (b) βp relative error. (c) Aerosol extinction coefficient κp retrieved from Raman channel [blue and red curves; use κm CA, 5-component molecular atmosphere, FN(T) applied]. Also shown, the retrieval from elastic channel, using far-end solution and κm CA, 5-component molecular atmosphere, FR(T) applied (blue and red curves). (d) κp relative error. Profiles correspond to 04.08.2006, 04-07 UTC and 05.08.2006, 04-07 UTC. Error bars in plots (a) and (c) represent the uncertainty in backscatter (βp error) and extinction (κp error) retrievals as computed through the error propagation. CA5cF stands for profiles using molecular scattering estimated through the classical approach, with 5-component molecular atmosphere and FX(T) correction. FE stands for far-end solution.

Fig. 11.
Fig. 11.

Effect of the temperature correction (blue curves): relative difference between βp using βm CA, 5-component molecular atmosphere (symbolized as βp,CA,5c) and βp using βm CA, 5-component molecular atmosphere and FR(T) correction (symbolized as βp,CA,5c,F) [(a) and (b)]; relative difference between κp using κm CA, 5-component molecular atmosphere (symbolized as κp,CA,5c) and κp using κm CA, 5-component molecular atmosphere and FN(T) correction (symbolized as κp,CA,5c,F) [(c) and (d)]. Effect of water vapor (green curves): relative difference between βp using βm CA, 2-component molecular atmosphere and FR(T) correction (symbolized as βp,CA,2c,F) and βp using βm CA, 5-component molecular atmosphere and FR(T) correction (symbolized as βp,CA,5c,F) [(a) and (b)]; relative difference between κp using κm CA, 2-component molecular atmosphere and FN(T) correction (symbolized as κp,CA,2c,F) and κp using κm CA, 5-component molecular atmosphere and FN(T) correction (symbolized as κp,CA,5c,F) [(c) and (d)]. Effect of temperature correction and water vapor (red curves): relative difference between βp using βm CA, 2-component molecular atmosphere (symbolized as βp,CA,2c) and βp using βm CA, 5-component molecular atmosphere and FR(T) correction (symbolized as βp,CA,5c,F) [(a) and (b)]; relative difference between κp using κm CA, 2-component molecular atmosphere (symbolized as κp,CA,2c) and κp using κm CA, 5-component molecular atmosphere and FN(T) correction (symbolized as κp,CA,5c,F) [(c) and (d)].

Fig. 12
Fig. 12

Relative difference for the molecular scattering between the old formulation [Eq. (1)] and the present formulation [Eq. (3)]. The minimum and maximum differences shown for the 5-component case correspond to WVMR of 6.46 and 25.86g/kg, respectively.

Tables (3)

Tables Icon

Table 1. Relative Difference for the Molecular Scattering between 2(4)-Component Molecular Atmosphere and 5-Component Molecular Atmosphere (the Highlighted Values Correspond to the Five Selected Wavelengths)

Tables Icon

Table 2. Regression between the Relative Difference of the Molecular Scattering [between 2(4)-component and 5-component Molecular Atmosphere] and WVMR (the Highlighted Values Correspond to the Five Selected Wavelengths)

Tables Icon

Table 3. Relative Difference [%] for the Molecular Scattering between the Old Formulation [Eq. (1)] and the Present Formulation [Eq. (3) (the Highlighted Values Correspond to the Five Selected Wavelengths)

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

σm=N24π3λ4Ns2(ns21)2(ns2+2)2Fk,
σm=N32π33λ4Ns2(ns1)2Fk.
σm=N8π33ε02λ4i=1Ngviαi2Fk,i.
σm=N8π33ε02λ4α¯2Fk¯,
α¯2=i=1Ngviαi2,
Fk¯=1α¯2i=1Ngviαi2Fk,i.
Sm=σmβm=8π31+2ε/91+7ε/45[sr]=8π310Fk¯7Fk¯+3[sr],
(σtΩ)=(2π)4(4πε0)2(ν0)4a2(1+745ε).
(σΩ)JQ=112π4(ν0)445(4πε0)2gn,J(2J+1)exp(Erot,J/KBT)Qrot(457a2+J(J+1)(2J1)(2J+3)γ2),J=0,1,2,,
(σΩ)JS=112π4(ν0Δν)445(4πε0)2gn,J(2J+1)exp(Erot,J/KBT)Qrot3(J+1)(J+2)2(2J+1)(2J+3)γ2,J=0,1,2,,
(σΩ)JO=112π4(ν0Δν)445(4πε0)2gn,J(2J+1)exp(Erot,J/KBT)Qrot3J(J1)2(2J+1)(2J1)γ2,J=2,3,4,.
κp(r)=P(r)r2e2rrmax[1SpSmFR(r)]κm(r)drP(rmax)rmax2κp(rmax)+SpSmFR(rmax)κm(rmax)+2rrmaxP(r)r2e2rrmax[1SpSmFR(r)]κm(r)drdrSpSmFR(r)κm(r),
βp(r)=P(r)r2e2rrmax[SmSpFR(r)]βm(r)drP(rmax)rmax2βp(rmax)+FR(rmax)βm(rmax)+2SprrmaxP(r)r2e2rrmax[SmSpFR(r)]βm(r)drdrFR(r)βm(r).
κp(λL,r)=ddr{ln[FN(r)NN(r)P(λN,r)r2]}κm(λL,r)κm(λN,r)1+(λLλN)k.
FR(T)=n=N2,O2νni(dσ(λX,i,T,π)dΩ)nξ(λX,i)n=N2,O2νn(dσt(λX,π)dΩ)nξ(λX),
FN(T)=idσ(λN,i,T,π)dΩξ(λN,i)dσt(λN,π)dΩξ(λN).
νi=[0.78084,0.209476]/(0.78084+0.209476).
νi=[0.78084,0.209476,0.00934,0.000344].
νi={(1Nw/Ns)*[0.78084,0.209476,0.00934,0.000344]Nw/Ns}.
α=3ε0Nn21n2+2,
108(n1)=6998.749+3233582144λ2,λ<0.254μm108(n1)=5989.242+3363266.3144λ2,0.254μm<λ<0.468μm108(n1)=6855.200+3243157144λ2,λ>0.468μm.
108(n1)=A+B40.9λ2A=23796.7,B=168988.4,λ<0.221μmA=22120.4,B=203187.6,0.221μm<λ<0.288μmA=20564.8,B=248089.9,0.288μm<λ<0.546μmA=21351.1,B=218567,λ>0.546μm.
n21=5.547*104(1+5.15*105λ2+4.19*1011λ4+4.09*1017λ6+4.32*1023λ8).
105(n1)=1205.5(5.79925166.175λ2+0.1200579.609λ2+0.53334*10256.3064λ2+0.43244*10246.0196λ2+1.218145*1040.0584738λ2).
108(n1)=1.022(295.235+2.6422λ20.03238λ4+0.004028λ6).
108(n1)=5792105238.0185λ2+16791757.362λ2.
Fk,N2=1.034+3.17*104λ2Fk,O2=1.096+1.385*103λ2+1.448*104λ4Fk,Ar=1Fk,CO2=1.15Fk,wv=1.001.
γ2=9a2(Fk1)2.
δ=6(Fk¯1)7Fk¯+3.

Metrics