Abstract

A submicrometer-thick zirconium dioxide film was deposited on the tip of a polished C-plane sapphire fiber to fabricate a temperature sensor that can work to an extended temperature range. Zirconium dioxide was selected as the thin film material to fabricate the temperature sensor because it has relatively close thermal expansion to that of sapphire, but more importantly it does not react appreciably with sapphire up to 1800 °C. In order to study the properties of the deposited thin film, ZrO2 was also deposited on C-plane sapphire substrates and characterized by x-ray diffraction for phase analysis as well as by atomic force microscopy for analysis of surface morphology. Using low-coherence optical interferometry, the fabricated thin-film-based sapphire fiber sensor was tested in the lab up to 1200 °C and calibrated from 200° to 1000 °C. The temperature resolution is determined to be 5.8 °C when using an Ocean Optics USB4000 spectrometer to detect the reflection spectra from the ZrO2 thin-film temperature sensor.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. N. Merberg and J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
    [CrossRef]
  2. R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
    [CrossRef]
  3. Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30, 711–713 (2005).
    [CrossRef]
  4. H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-Crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21, 2276–2283 (2003).
    [CrossRef]
  5. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35, 619–621 (2010).
    [CrossRef]
  6. D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2010).
    [CrossRef]
  7. J. Wang, E. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J. 11, 3406–3408 (2011).
    [CrossRef]
  8. G. Tilloca, “Thermal stabilization of aluminium titanate and properties of aluminium titanate solid solutions,” J. Mater. Sci. 26, 2809–2814 (1991).
    [CrossRef]
  9. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermophysical Properties of Matter, Vol. 13: Thermal Expansion Nonmetallic Solids (IFI/Plenum, 1977).
  10. M. A. Clevinger, Phase Diagrams for Ceramists. Bibliographic update through January 1, 1989, and cumulative indexes for volumes I–VIII (American Ceramic Society, 1990).
  11. C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. Sect. B 44, 116–120 (1988).
    [CrossRef]
  12. M. Bocanegra-Bernal and S. Díaz De La Torre, “Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics,” J. Mater. Sci. 37, 4947–4971 (2002).
    [CrossRef]
  13. Y. Zhu and A. Wang, “Surface-mount sapphire interferometric temperature sensor,” Appl. Opt. 45, 6071–6076 (2006).
    [CrossRef]
  14. B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
    [CrossRef]

2011 (1)

J. Wang, E. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J. 11, 3406–3408 (2011).
[CrossRef]

2010 (2)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2010).
[CrossRef]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35, 619–621 (2010).
[CrossRef]

2006 (1)

2005 (1)

2003 (2)

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-Crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21, 2276–2283 (2003).
[CrossRef]

2002 (1)

M. Bocanegra-Bernal and S. Díaz De La Torre, “Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics,” J. Mater. Sci. 37, 4947–4971 (2002).
[CrossRef]

1993 (1)

1991 (1)

G. Tilloca, “Thermal stabilization of aluminium titanate and properties of aluminium titanate solid solutions,” J. Mater. Sci. 26, 2809–2814 (1991).
[CrossRef]

1988 (1)

C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. Sect. B 44, 116–120 (1988).
[CrossRef]

1983 (1)

R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
[CrossRef]

Bocanegra-Bernal, M.

M. Bocanegra-Bernal and S. Díaz De La Torre, “Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics,” J. Mater. Sci. 37, 4947–4971 (2002).
[CrossRef]

Clevinger, M. A.

M. A. Clevinger, Phase Diagrams for Ceramists. Bibliographic update through January 1, 1989, and cumulative indexes for volumes I–VIII (American Ceramic Society, 1990).

Deng, J.

Díaz De La Torre, S.

M. Bocanegra-Bernal and S. Díaz De La Torre, “Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics,” J. Mater. Sci. 37, 4947–4971 (2002).
[CrossRef]

Dils, R.

R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
[CrossRef]

Ding, H.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2010).
[CrossRef]

Dong, B.

J. Wang, E. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J. 11, 3406–3408 (2011).
[CrossRef]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35, 619–621 (2010).
[CrossRef]

Gong, J.

J. Wang, E. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J. 11, 3406–3408 (2011).
[CrossRef]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35, 619–621 (2010).
[CrossRef]

Grobnic, D.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2010).
[CrossRef]

Han, M.

Harrington, J. A.

Hill, R. J.

C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. Sect. B 44, 116–120 (1988).
[CrossRef]

Hong, Y.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Howard, C. J.

C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. Sect. B 44, 116–120 (1988).
[CrossRef]

Huang, Z.

Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30, 711–713 (2005).
[CrossRef]

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Huo, W.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Kirby, R. K.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermophysical Properties of Matter, Vol. 13: Thermal Expansion Nonmetallic Solids (IFI/Plenum, 1977).

Lally, E.

J. Wang, E. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J. 11, 3406–3408 (2011).
[CrossRef]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35, 619–621 (2010).
[CrossRef]

Lee, T. Y. R.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermophysical Properties of Matter, Vol. 13: Thermal Expansion Nonmetallic Solids (IFI/Plenum, 1977).

May, R. G.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-Crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21, 2276–2283 (2003).
[CrossRef]

Merberg, G. N.

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2010).
[CrossRef]

Peng, W.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Pickrell, G.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-Crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21, 2276–2283 (2003).
[CrossRef]

Qi, B.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Reichert, B. E.

C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. Sect. B 44, 116–120 (1988).
[CrossRef]

Shen, F.

Smelser, C. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2010).
[CrossRef]

Taylor, R. E.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermophysical Properties of Matter, Vol. 13: Thermal Expansion Nonmetallic Solids (IFI/Plenum, 1977).

Tilloca, G.

G. Tilloca, “Thermal stabilization of aluminium titanate and properties of aluminium titanate solid solutions,” J. Mater. Sci. 26, 2809–2814 (1991).
[CrossRef]

Touloukian, Y. S.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermophysical Properties of Matter, Vol. 13: Thermal Expansion Nonmetallic Solids (IFI/Plenum, 1977).

Wang, A.

Wang, J.

J. Wang, E. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J. 11, 3406–3408 (2011).
[CrossRef]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35, 619–621 (2010).
[CrossRef]

Xiao, H.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-Crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21, 2276–2283 (2003).
[CrossRef]

Xu, J.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Zhang, P.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Zhu, Y.

Acta Crystallogr. Sect. B (1)

C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. Sect. B 44, 116–120 (1988).
[CrossRef]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2010).
[CrossRef]

IEEE Sens. J. (1)

J. Wang, E. Lally, B. Dong, J. Gong, and A. Wang, “Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip,” IEEE Sens. J. 11, 3406–3408 (2011).
[CrossRef]

J. Appl. Phys. (1)

R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater. Sci. (2)

M. Bocanegra-Bernal and S. Díaz De La Torre, “Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics,” J. Mater. Sci. 37, 4947–4971 (2002).
[CrossRef]

G. Tilloca, “Thermal stabilization of aluminium titanate and properties of aluminium titanate solid solutions,” J. Mater. Sci. 26, 2809–2814 (1991).
[CrossRef]

Opt. Eng. (1)

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Hong, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Opt. Lett. (2)

Other (2)

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermophysical Properties of Matter, Vol. 13: Thermal Expansion Nonmetallic Solids (IFI/Plenum, 1977).

M. A. Clevinger, Phase Diagrams for Ceramists. Bibliographic update through January 1, 1989, and cumulative indexes for volumes I–VIII (American Ceramic Society, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Microscopic images of the ZrO2 thin film after annealing at different temperatures.

Fig. 2.
Fig. 2.

Surface metrology of the ZrO2 thin film samples.

Fig. 3.
Fig. 3.

Reflection spectrum of Sample #1 after 1500 °C annealing.

Fig. 4.
Fig. 4.

XRD results for the sapphire wafer samples.

Fig. 5.
Fig. 5.

Optical interrogation system for the ZrO2 thin-film sensors.

Fig. 6.
Fig. 6.

Reflection spectra of a ZrO2 thin-film sensor at different temperatures.

Fig. 7.
Fig. 7.

Relative wavelength shift of the ZrO2 thin-film sensor measured at 1000 °C.

Fig. 8.
Fig. 8.

Calibration curve for the ZrO2 thin-film sensor.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ITF(λ)=Ih(λ)·Isp(λ)·Is(λ)=Ih(λ)·Isp(λ)·[IDC+IAC·cos(2πOPD/λφ0)]λm(T)=2n(T)d(T)m+φ02π,OPD2nd.
Δλλλm(T)λm(T)λm(T)=2n(T)d(T)2n(T)d(T)2n(T)d(T)(1+αdΔT)(1+αnΔT)1=(αd+αn)ΔT+αdαnΔT2.
I1(λ)=In(λ)+Ibbr(λ)I2(λ)=In(λ)+Ibbr(λ)+Ih(λ)·Isp(λ)·[IDC+IAC·cos(2πOPD/λφ0)].
S=Δλλ·ΔT=1.009×102800°C=1.262×105/°C.

Metrics