Abstract

Amplified stimulated emission (ASE) represents a significant issue in two-photon laser-induced fluorescence (TPLIF). The ASE effects are nonlinear and nonlocal, i.e., the ASE effects distort the LIF signal nonlinearly, and the distortion at one location depends on conditions at other locations. In this sense, the ASE effects pose a greater challenge to quantitative TPLIF than quenching and ionization. This work therefore seeks a method to correct such distortion. The method uses two LIF measurements, one with low signal-to-noise ratio (SNR) and negligible ASE distortion and another with high SNR but significant distortion, to generate a faithful measurement with high SNR. Extensive simulations were performed to evaluate the performance of this method for practical applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  2. K. C. Smyth and D. R. Crosley, “Detection of minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 9–68.
  3. N. Georgiev and M. Alden, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
    [CrossRef]
  4. J. H. Frank, X. L. Chen, B. D. Patterson, and T. B. Settersten, “Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames,” Appl. Opt. 43, 2588–2597 (2004).
    [CrossRef]
  5. N. J. Bednar, J. W. Walewski, and S. T. Sanders, “Assessment of multiphoton absorption in inert gases for the measurement of gas temperatures,” Appl. Spectrosc. 60, 246–253 (2006).
    [CrossRef]
  6. A. G. Hsu, V. Narayanaswamy, N. T. Clemens, and J. H. Frank, “Mixture fraction imaging in turbulent non-premixed flames with two-photon LIF of krypton,” in Proceedings of the Combustion Institute, Vol. 33 (Combustion Institute, 2011), pp. 759–766.
  7. M. Richter, Z. S. Li, and M. Alden, “Application of two-photon laser-induced fluorescence for single-shot visualization of carbon monoxide in a spark ignited engine,” Appl. Spectrosc. 61, 1–5 (2007).
    [CrossRef]
  8. U. Westblom and M. Alden, “Laser-induced fluorescence detection of NH3 in flames with the use of 2-photon excitation,” Appl. Spectrosc. 44, 881–886 (1990).
    [CrossRef]
  9. K. Nyholm, R. Fritzon, N. Georgiev, and M. Alden, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
    [CrossRef]
  10. J. E. M. Goldsmith, “Photonchemical effects in 2-photon-excited fluorescence detection of atomic oxygen in flames,” Appl. Opt. 26, 3566–3572 (1987).
    [CrossRef]
  11. J. E. M. Goldsmith, “Two-photon-excited stimulated-emission from atomic-hydrogen in flames,” J. Opt. Soc. Am. B 6, 1979–1985 (1989).
    [CrossRef]
  12. N. Georgiev, K. Nyholm, R. Fritzon, and M. Alden, “Developments of the amplified stimulated-emission technique for spatially resolved species detection in flames,” Opt. Commun. 108, 71–76 (1994).
    [CrossRef]
  13. A. D. Tserepi, E. Wurzberg, and T. A. Miller, “Two-photon-excited stimulated emission from atomic oxygen in RF plasmas: detection and estimation of its threshold,” Chem. Phys. Lett. 265, 297–302 (1997).
    [CrossRef]
  14. L. W. Casperson, “Rate-equation approximations in high-gain lasers,” Phys. Rev. A 55, 3073–3085 (1997).
    [CrossRef]
  15. J. W. Daily, “Use of rate equations to describe laser excitation in flames,” Appl. Opt. 16, 2322–2327 (1977).
    [CrossRef]
  16. J. Amorim, G. Baravian, and J. Jolly, “Laser-induced resonance fluorescence as a diagnostic technique in non-thermal equilibrium plasmas,” J. Phys. D: Appl. Phys. 33, R51–R65 (2000).
    [CrossRef]
  17. H. Bergstrom, H. Lundberg, and A. Persson, “Investigations of stimulated-emission on B-A lines in CO,” Z. Phys. D: At. Mol. Clusters 21, 323–327 (1991).
    [CrossRef]
  18. Y. L. Huang and R. J. Gordon, “The effect of amplified spontaneous emission on the measurement of the multiplet state distribution of ground-state oxygen atoms,” J. Chem. Phys. 97, 6363–6368 (1992).
    [CrossRef]
  19. J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser-induced fluorescence and amplified spontaneous emission atom concentration measurements in O(2) and H(2) discharges,” J. Appl. Phys. 76, 1487–1493 (1994).
    [CrossRef]
  20. Y. Zhao, C. N. Tong, and L. Ma, “Demonstration of a new laser diagnostic based on photodissociation spectroscopy for imaging mixture fraction in a non-premixed jet flame,” Appl. Spectrosc. 64, 377–383 (2010).
    [CrossRef]
  21. Y. Zhao, C. N. Tong, and L. Ma, “Assessment of a novel flow visualization technique using photodissociation spectroscopy,” Appl. Spectrosc. 63, 199–206 (2009).
    [CrossRef]
  22. T. B. Settersten, and M. A. Linne, “Modeling pulsed excitation for gas-phase laser diagnostics,” J. Opt. Soc. Am. B 19, 954–964 (2002).
    [CrossRef]
  23. L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031–2047 (1973).
    [CrossRef]
  24. M. E. Riley, “Growth of parametric fields in (2+1)-photon laser ionization of atomic oxygen,” Phys. Rev. A 41, 4843–4856 (1990).
    [CrossRef]
  25. Y. Zhao and L. Ma, “Multidimensional Monte Carlo model for two-photon LIF and amplified spontaneous emission,” Comput. Phys. Commun., doi:10.1016/j.cpc.2012.02.027 (to be published).
    [CrossRef]
  26. M. Alden, U. Westblom, and J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases,” Opt. Lett. 14, 305–307 (1989).
    [CrossRef]
  27. S. Agrup, F. Ossler, and M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479–487 (1995).
    [CrossRef]
  28. K. Niemi, V. Schulz-von der Gathen, and H. F. Dobele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D: Appl. Phys. 34, 2330–2335 (2001).
    [CrossRef]
  29. L. Cerdan, A. Costela, and I. Garcia-Moreno, “On the characteristic lengths in the variable stripe length method for optical gain measurements,” J. Opt. Soc. Am. B 27, 1874–1877(2010).
    [CrossRef]
  30. R. C. Y. Auyeung, D. G. Cooper, S. Kim, and B. J. Feldman, “Stimulated-emission in atomic-hydrogen at 656 nm,” Opt. Commun. 79, 207–210 (1990).
    [CrossRef]
  31. W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic Transition Probabilities,” Vol. 1, National Standard Reference Data Series, NSRDS-NBS, Issue 4 (National Bureau of Standards, 1966).

2010 (2)

2009 (1)

2007 (1)

2006 (1)

2004 (1)

2002 (1)

2001 (1)

K. Niemi, V. Schulz-von der Gathen, and H. F. Dobele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D: Appl. Phys. 34, 2330–2335 (2001).
[CrossRef]

2000 (1)

J. Amorim, G. Baravian, and J. Jolly, “Laser-induced resonance fluorescence as a diagnostic technique in non-thermal equilibrium plasmas,” J. Phys. D: Appl. Phys. 33, R51–R65 (2000).
[CrossRef]

1997 (3)

A. D. Tserepi, E. Wurzberg, and T. A. Miller, “Two-photon-excited stimulated emission from atomic oxygen in RF plasmas: detection and estimation of its threshold,” Chem. Phys. Lett. 265, 297–302 (1997).
[CrossRef]

L. W. Casperson, “Rate-equation approximations in high-gain lasers,” Phys. Rev. A 55, 3073–3085 (1997).
[CrossRef]

N. Georgiev and M. Alden, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
[CrossRef]

1995 (2)

K. Nyholm, R. Fritzon, N. Georgiev, and M. Alden, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

S. Agrup, F. Ossler, and M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479–487 (1995).
[CrossRef]

1994 (2)

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser-induced fluorescence and amplified spontaneous emission atom concentration measurements in O(2) and H(2) discharges,” J. Appl. Phys. 76, 1487–1493 (1994).
[CrossRef]

N. Georgiev, K. Nyholm, R. Fritzon, and M. Alden, “Developments of the amplified stimulated-emission technique for spatially resolved species detection in flames,” Opt. Commun. 108, 71–76 (1994).
[CrossRef]

1992 (1)

Y. L. Huang and R. J. Gordon, “The effect of amplified spontaneous emission on the measurement of the multiplet state distribution of ground-state oxygen atoms,” J. Chem. Phys. 97, 6363–6368 (1992).
[CrossRef]

1991 (1)

H. Bergstrom, H. Lundberg, and A. Persson, “Investigations of stimulated-emission on B-A lines in CO,” Z. Phys. D: At. Mol. Clusters 21, 323–327 (1991).
[CrossRef]

1990 (3)

M. E. Riley, “Growth of parametric fields in (2+1)-photon laser ionization of atomic oxygen,” Phys. Rev. A 41, 4843–4856 (1990).
[CrossRef]

R. C. Y. Auyeung, D. G. Cooper, S. Kim, and B. J. Feldman, “Stimulated-emission in atomic-hydrogen at 656 nm,” Opt. Commun. 79, 207–210 (1990).
[CrossRef]

U. Westblom and M. Alden, “Laser-induced fluorescence detection of NH3 in flames with the use of 2-photon excitation,” Appl. Spectrosc. 44, 881–886 (1990).
[CrossRef]

1989 (2)

1987 (1)

1977 (1)

1973 (1)

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031–2047 (1973).
[CrossRef]

Agrup, S.

S. Agrup, F. Ossler, and M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479–487 (1995).
[CrossRef]

Alden, M.

M. Richter, Z. S. Li, and M. Alden, “Application of two-photon laser-induced fluorescence for single-shot visualization of carbon monoxide in a spark ignited engine,” Appl. Spectrosc. 61, 1–5 (2007).
[CrossRef]

N. Georgiev and M. Alden, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
[CrossRef]

K. Nyholm, R. Fritzon, N. Georgiev, and M. Alden, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

S. Agrup, F. Ossler, and M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479–487 (1995).
[CrossRef]

N. Georgiev, K. Nyholm, R. Fritzon, and M. Alden, “Developments of the amplified stimulated-emission technique for spatially resolved species detection in flames,” Opt. Commun. 108, 71–76 (1994).
[CrossRef]

U. Westblom and M. Alden, “Laser-induced fluorescence detection of NH3 in flames with the use of 2-photon excitation,” Appl. Spectrosc. 44, 881–886 (1990).
[CrossRef]

M. Alden, U. Westblom, and J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases,” Opt. Lett. 14, 305–307 (1989).
[CrossRef]

Allen, L.

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031–2047 (1973).
[CrossRef]

Amorim, J.

J. Amorim, G. Baravian, and J. Jolly, “Laser-induced resonance fluorescence as a diagnostic technique in non-thermal equilibrium plasmas,” J. Phys. D: Appl. Phys. 33, R51–R65 (2000).
[CrossRef]

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser-induced fluorescence and amplified spontaneous emission atom concentration measurements in O(2) and H(2) discharges,” J. Appl. Phys. 76, 1487–1493 (1994).
[CrossRef]

Auyeung, R. C. Y.

R. C. Y. Auyeung, D. G. Cooper, S. Kim, and B. J. Feldman, “Stimulated-emission in atomic-hydrogen at 656 nm,” Opt. Commun. 79, 207–210 (1990).
[CrossRef]

Baravian, G.

J. Amorim, G. Baravian, and J. Jolly, “Laser-induced resonance fluorescence as a diagnostic technique in non-thermal equilibrium plasmas,” J. Phys. D: Appl. Phys. 33, R51–R65 (2000).
[CrossRef]

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser-induced fluorescence and amplified spontaneous emission atom concentration measurements in O(2) and H(2) discharges,” J. Appl. Phys. 76, 1487–1493 (1994).
[CrossRef]

Bednar, N. J.

Bergstrom, H.

H. Bergstrom, H. Lundberg, and A. Persson, “Investigations of stimulated-emission on B-A lines in CO,” Z. Phys. D: At. Mol. Clusters 21, 323–327 (1991).
[CrossRef]

Casperson, L. W.

L. W. Casperson, “Rate-equation approximations in high-gain lasers,” Phys. Rev. A 55, 3073–3085 (1997).
[CrossRef]

Cerdan, L.

Chen, X. L.

Clemens, N. T.

A. G. Hsu, V. Narayanaswamy, N. T. Clemens, and J. H. Frank, “Mixture fraction imaging in turbulent non-premixed flames with two-photon LIF of krypton,” in Proceedings of the Combustion Institute, Vol. 33 (Combustion Institute, 2011), pp. 759–766.

Cooper, D. G.

R. C. Y. Auyeung, D. G. Cooper, S. Kim, and B. J. Feldman, “Stimulated-emission in atomic-hydrogen at 656 nm,” Opt. Commun. 79, 207–210 (1990).
[CrossRef]

Costela, A.

Crosley, D. R.

K. C. Smyth and D. R. Crosley, “Detection of minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 9–68.

Daily, J. W.

Dobele, H. F.

K. Niemi, V. Schulz-von der Gathen, and H. F. Dobele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D: Appl. Phys. 34, 2330–2335 (2001).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

Feldman, B. J.

R. C. Y. Auyeung, D. G. Cooper, S. Kim, and B. J. Feldman, “Stimulated-emission in atomic-hydrogen at 656 nm,” Opt. Commun. 79, 207–210 (1990).
[CrossRef]

Frank, J. H.

J. H. Frank, X. L. Chen, B. D. Patterson, and T. B. Settersten, “Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames,” Appl. Opt. 43, 2588–2597 (2004).
[CrossRef]

A. G. Hsu, V. Narayanaswamy, N. T. Clemens, and J. H. Frank, “Mixture fraction imaging in turbulent non-premixed flames with two-photon LIF of krypton,” in Proceedings of the Combustion Institute, Vol. 33 (Combustion Institute, 2011), pp. 759–766.

Fritzon, R.

K. Nyholm, R. Fritzon, N. Georgiev, and M. Alden, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

N. Georgiev, K. Nyholm, R. Fritzon, and M. Alden, “Developments of the amplified stimulated-emission technique for spatially resolved species detection in flames,” Opt. Commun. 108, 71–76 (1994).
[CrossRef]

Garcia-Moreno, I.

Georgiev, N.

N. Georgiev and M. Alden, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
[CrossRef]

K. Nyholm, R. Fritzon, N. Georgiev, and M. Alden, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

N. Georgiev, K. Nyholm, R. Fritzon, and M. Alden, “Developments of the amplified stimulated-emission technique for spatially resolved species detection in flames,” Opt. Commun. 108, 71–76 (1994).
[CrossRef]

Glennon, B. M.

W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic Transition Probabilities,” Vol. 1, National Standard Reference Data Series, NSRDS-NBS, Issue 4 (National Bureau of Standards, 1966).

Goldsmith, J. E. M.

Gordon, R. J.

Y. L. Huang and R. J. Gordon, “The effect of amplified spontaneous emission on the measurement of the multiplet state distribution of ground-state oxygen atoms,” J. Chem. Phys. 97, 6363–6368 (1992).
[CrossRef]

Hsu, A. G.

A. G. Hsu, V. Narayanaswamy, N. T. Clemens, and J. H. Frank, “Mixture fraction imaging in turbulent non-premixed flames with two-photon LIF of krypton,” in Proceedings of the Combustion Institute, Vol. 33 (Combustion Institute, 2011), pp. 759–766.

Huang, Y. L.

Y. L. Huang and R. J. Gordon, “The effect of amplified spontaneous emission on the measurement of the multiplet state distribution of ground-state oxygen atoms,” J. Chem. Phys. 97, 6363–6368 (1992).
[CrossRef]

Jolly, J.

J. Amorim, G. Baravian, and J. Jolly, “Laser-induced resonance fluorescence as a diagnostic technique in non-thermal equilibrium plasmas,” J. Phys. D: Appl. Phys. 33, R51–R65 (2000).
[CrossRef]

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser-induced fluorescence and amplified spontaneous emission atom concentration measurements in O(2) and H(2) discharges,” J. Appl. Phys. 76, 1487–1493 (1994).
[CrossRef]

Kim, S.

R. C. Y. Auyeung, D. G. Cooper, S. Kim, and B. J. Feldman, “Stimulated-emission in atomic-hydrogen at 656 nm,” Opt. Commun. 79, 207–210 (1990).
[CrossRef]

Li, Z. S.

Linne, M. A.

Lundberg, H.

H. Bergstrom, H. Lundberg, and A. Persson, “Investigations of stimulated-emission on B-A lines in CO,” Z. Phys. D: At. Mol. Clusters 21, 323–327 (1991).
[CrossRef]

Ma, L.

Miller, T. A.

A. D. Tserepi, E. Wurzberg, and T. A. Miller, “Two-photon-excited stimulated emission from atomic oxygen in RF plasmas: detection and estimation of its threshold,” Chem. Phys. Lett. 265, 297–302 (1997).
[CrossRef]

Narayanaswamy, V.

A. G. Hsu, V. Narayanaswamy, N. T. Clemens, and J. H. Frank, “Mixture fraction imaging in turbulent non-premixed flames with two-photon LIF of krypton,” in Proceedings of the Combustion Institute, Vol. 33 (Combustion Institute, 2011), pp. 759–766.

Niemi, K.

K. Niemi, V. Schulz-von der Gathen, and H. F. Dobele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D: Appl. Phys. 34, 2330–2335 (2001).
[CrossRef]

Nyholm, K.

K. Nyholm, R. Fritzon, N. Georgiev, and M. Alden, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

N. Georgiev, K. Nyholm, R. Fritzon, and M. Alden, “Developments of the amplified stimulated-emission technique for spatially resolved species detection in flames,” Opt. Commun. 108, 71–76 (1994).
[CrossRef]

Ossler, F.

S. Agrup, F. Ossler, and M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479–487 (1995).
[CrossRef]

Patterson, B. D.

Persson, A.

H. Bergstrom, H. Lundberg, and A. Persson, “Investigations of stimulated-emission on B-A lines in CO,” Z. Phys. D: At. Mol. Clusters 21, 323–327 (1991).
[CrossRef]

Peters, G. I.

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031–2047 (1973).
[CrossRef]

Richter, M.

Riley, M. E.

M. E. Riley, “Growth of parametric fields in (2+1)-photon laser ionization of atomic oxygen,” Phys. Rev. A 41, 4843–4856 (1990).
[CrossRef]

Sanders, S. T.

Schulz-von der Gathen, V.

K. Niemi, V. Schulz-von der Gathen, and H. F. Dobele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D: Appl. Phys. 34, 2330–2335 (2001).
[CrossRef]

Settersten, T. B.

Smith, M. W.

W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic Transition Probabilities,” Vol. 1, National Standard Reference Data Series, NSRDS-NBS, Issue 4 (National Bureau of Standards, 1966).

Smyth, K. C.

K. C. Smyth and D. R. Crosley, “Detection of minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 9–68.

Tong, C. N.

Touzeau, M.

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser-induced fluorescence and amplified spontaneous emission atom concentration measurements in O(2) and H(2) discharges,” J. Appl. Phys. 76, 1487–1493 (1994).
[CrossRef]

Tserepi, A. D.

A. D. Tserepi, E. Wurzberg, and T. A. Miller, “Two-photon-excited stimulated emission from atomic oxygen in RF plasmas: detection and estimation of its threshold,” Chem. Phys. Lett. 265, 297–302 (1997).
[CrossRef]

Walewski, J. W.

Westblom, U.

Wiese, W. L.

W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic Transition Probabilities,” Vol. 1, National Standard Reference Data Series, NSRDS-NBS, Issue 4 (National Bureau of Standards, 1966).

Wurzberg, E.

A. D. Tserepi, E. Wurzberg, and T. A. Miller, “Two-photon-excited stimulated emission from atomic oxygen in RF plasmas: detection and estimation of its threshold,” Chem. Phys. Lett. 265, 297–302 (1997).
[CrossRef]

Zhao, Y.

Appl. Opt. (3)

Appl. Phys. B (1)

S. Agrup, F. Ossler, and M. Alden, “Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479–487 (1995).
[CrossRef]

Appl. Spectrosc. (6)

Chem. Phys. Lett. (1)

A. D. Tserepi, E. Wurzberg, and T. A. Miller, “Two-photon-excited stimulated emission from atomic oxygen in RF plasmas: detection and estimation of its threshold,” Chem. Phys. Lett. 265, 297–302 (1997).
[CrossRef]

Comput. Phys. Commun. (1)

Y. Zhao and L. Ma, “Multidimensional Monte Carlo model for two-photon LIF and amplified spontaneous emission,” Comput. Phys. Commun., doi:10.1016/j.cpc.2012.02.027 (to be published).
[CrossRef]

J. Appl. Phys. (1)

J. Amorim, G. Baravian, M. Touzeau, and J. Jolly, “Two-photon laser-induced fluorescence and amplified spontaneous emission atom concentration measurements in O(2) and H(2) discharges,” J. Appl. Phys. 76, 1487–1493 (1994).
[CrossRef]

J. Chem. Phys. (1)

Y. L. Huang and R. J. Gordon, “The effect of amplified spontaneous emission on the measurement of the multiplet state distribution of ground-state oxygen atoms,” J. Chem. Phys. 97, 6363–6368 (1992).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. D: Appl. Phys. (2)

K. Niemi, V. Schulz-von der Gathen, and H. F. Dobele, “Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation,” J. Phys. D: Appl. Phys. 34, 2330–2335 (2001).
[CrossRef]

J. Amorim, G. Baravian, and J. Jolly, “Laser-induced resonance fluorescence as a diagnostic technique in non-thermal equilibrium plasmas,” J. Phys. D: Appl. Phys. 33, R51–R65 (2000).
[CrossRef]

Opt. Commun. (3)

K. Nyholm, R. Fritzon, N. Georgiev, and M. Alden, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

N. Georgiev, K. Nyholm, R. Fritzon, and M. Alden, “Developments of the amplified stimulated-emission technique for spatially resolved species detection in flames,” Opt. Commun. 108, 71–76 (1994).
[CrossRef]

R. C. Y. Auyeung, D. G. Cooper, S. Kim, and B. J. Feldman, “Stimulated-emission in atomic-hydrogen at 656 nm,” Opt. Commun. 79, 207–210 (1990).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031–2047 (1973).
[CrossRef]

M. E. Riley, “Growth of parametric fields in (2+1)-photon laser ionization of atomic oxygen,” Phys. Rev. A 41, 4843–4856 (1990).
[CrossRef]

L. W. Casperson, “Rate-equation approximations in high-gain lasers,” Phys. Rev. A 55, 3073–3085 (1997).
[CrossRef]

Z. Phys. D: At. Mol. Clusters (1)

H. Bergstrom, H. Lundberg, and A. Persson, “Investigations of stimulated-emission on B-A lines in CO,” Z. Phys. D: At. Mol. Clusters 21, 323–327 (1991).
[CrossRef]

Other (4)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

K. C. Smyth and D. R. Crosley, “Detection of minor species with laser techniques,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds. (Taylor & Francis, 2002), pp. 9–68.

A. G. Hsu, V. Narayanaswamy, N. T. Clemens, and J. H. Frank, “Mixture fraction imaging in turbulent non-premixed flames with two-photon LIF of krypton,” in Proceedings of the Combustion Institute, Vol. 33 (Combustion Institute, 2011), pp. 759–766.

W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic Transition Probabilities,” Vol. 1, National Standard Reference Data Series, NSRDS-NBS, Issue 4 (National Bureau of Standards, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Illustration of the TPLIF process and ASE effects. (b) Schematic of the MC model in 1D; schematic of the MC model in multidimensional.

Fig. 2.
Fig. 2.

Comparison of the LIF and ASE signals calculated by the MC model and the rate equation. Calculations conducted to simulate the LIF and ASE signals from H atoms in an H2/O2/Ar flame.

Fig. 3.
Fig. 3.

LIF and ASE signals calculated by the MC model at various excitation pulse energies. The ASE field was represented by the number of ASE photons in each voxel at a time of 4 ns.

Fig. 4.
Fig. 4.

LIF and ASE signals simulated for H atoms. The LIF signal corresponds to the number of LIF photons received on the voxel corresponding to x=0. The ASE signal corresponds to the ASE photons received in the forward direction. An integration time of 10 ns was used for the calculation of both the LIF and ASE signals.

Fig. 5.
Fig. 5.

LIF signals at relatively low and high excitation energies, with artificial noise added to simulate practical measurements.

Fig. 6.
Fig. 6.

(a) Ratio between the LIF signals obtained at low and high excitation energies. (b) The relative error in the fitted ratio.

Fig. 7.
Fig. 7.

(a) Comparison of the corrected LIF signal to SLN and STrue. (b) Illustration that the noise in the corrected signal is significantly lower than the noise in SLN.

Fig. 8.
Fig. 8.

(a) Illustration of the phantom n1 distribution used and the distortion caused by ASE. (b) Illustration that the shape of the ratio is insensitive to the n1 distribution and the excitation energies.

Fig. 9.
Fig. 9.

(a) Ratio between the LIF signals obtained at low and high excitation energies. (b) The relative error in the fitted ratio.

Fig. 10.
Fig. 10.

(a) Comparison of the corrected LIF signal to SLN and STrue. (b) Illustration that the noise in the corrected signal is significantly lower than the noise in SLN.

Fig. 11.
Fig. 11.

Performance of the correction method simulated for various distributions. (a) The large red symbols correspond to the noise and distortion for the n1 distribution shown in Fig. 10. (b) The large red symbols correspond to the noise and distortion of the top-hat distribution shown in Fig. 5.

Tables (1)

Tables Icon

Table 1. Spectroscopic Properties of the H Atom Used in This Work

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

SLN=P(SL)+ϵandSHN=P(SH)+ϵ,
xIASE(x)=B32ΓcΔvASE(IASEf(x)IASEb(x))Δn+A32(ΔΩf(x)ΔΩb(x))n3(x)hvASE,
Δn=(n3(x)g3g2n2(x)),
xIASEf(x)=B32ΓcΔνASE·IASEf·Δn+A32·ΔΩf(x)·n3(x)·hνASE.
IASEf(x)=A32ΔΩfhνASEB32Γ/cΔνASEexp(B32ΓcΔνASE0xn3(x)dx))A32ΔΩfhνASEB32Γ/cΔνASE.
0=W13(n1g1g2n3)(W32f_W32b)(n3g3g2n2)(W34+A32+Q3a)n3,
W32f=B32IASE,fcΔνASEΓandW32b=B32IASE,bcΔνASEΓ,
n3(x)=W13n1(x)A32ΔΩfB32Γ/cΔνASE[exp(B32ΓcΔνASE0xn3(x)dx)1]+(W34+A32+Q3a)+W13g1g3.
RTrue=n3,L(x)n3,H(x),
Note=1LL|SLNSL||SL|dxor1LL|SHNSH||SH|dx,
Distortion=1LL|SLAn11|dxor1LL|SHBn11|dx.
LSL2dx=L(A·n1)2dxandLSH2dx=L(B·n1)2dx.
Noise=1LL|SCSH·RFit|SH·RFitdx,
Distortion=1LL|SH·RFitC·n11|dx.
L(SH·RFit)2dxL(C·n1)2dx.

Metrics