Abstract

A process for reinforcing a direct bond between optical materials using femtosecond laser welding is presented. As a side benefit, the optical transmission properties of the joined components are shown not to be altered by the joining process. The joints exhibits higher shear breakage loads, yielding a maximum measured joint strength of 5.25 MPa for an applied load of 75 kg in fused silica. The laser sealing of direct bonds between dissimilar materials improves their resistance to thermal shocks. Direct bonds sealed by a circular weld seam can withstand thermal shocks at temperatures at least twice as great as nonreinforced direct bonds. The combination of ultrashort laser welding and direct bonding provides an innovative joining method that benefits from the advantages of both contributing physical processes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription