Abstract

A process for reinforcing a direct bond between optical materials using femtosecond laser welding is presented. As a side benefit, the optical transmission properties of the joined components are shown not to be altered by the joining process. The joints exhibits higher shear breakage loads, yielding a maximum measured joint strength of 5.25 MPa for an applied load of 75 kg in fused silica. The laser sealing of direct bonds between dissimilar materials improves their resistance to thermal shocks. Direct bonds sealed by a circular weld seam can withstand thermal shocks at temperatures at least twice as great as nonreinforced direct bonds. The combination of ultrashort laser welding and direct bonding provides an innovative joining method that benefits from the advantages of both contributing physical processes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Haisma and G. A. C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. R 37, 1–60 (2002).
    [CrossRef]
  2. J. Haisma, N. Hattu, J. T. Pulles, E. Steding, and J. C. Vervest, “Direct bonding and beyond,” Appl. Opt. 46, 6793–6803 (2007).
    [CrossRef]
  3. J. Haisma, G. A. C. M. Spierings, T. M. Michielson, and C. L. Adema, “Surface preparation and phenomenological aspects of direct bonding,” Philips J. Res. 49, 23–46 (1995).
    [CrossRef]
  4. J. Haisma, C. L. Alting, and T. M. Michielsen, “Method of manufacturing a semiconductor device,” U.S. patent 5,009,689 (23 May 1991).
  5. D. I. Pomerantz, “Anodic bonding,” U.S. patent 3,397,278 (13 August 1968).
  6. K. Itoh and T. Tamaki, “Substance joining method, substance joining device, joined body, and its manufacturing method,” U.S. patent 2010/0047587 (25 February 2010).
  7. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, L687–L689 (2005).
    [CrossRef]
  8. J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” App. Phys. Let. 89, 021106 (2006).
    [CrossRef]
  9. W. Watanabe, T. Tamaki, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10468–10476 (2006).
    [CrossRef]
  10. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
    [CrossRef]
  11. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep. 441, 47–189 (2007).
  12. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
    [CrossRef]
  13. K. Cvecek, L. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultra short laser pulses yields higher seam strength,” Appl. Opt. 50, 1941–1944 (2011).
    [CrossRef]
  14. I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phy. Proc. 5, 483–493(2010).
    [CrossRef]
  15. S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultrashort laser pulses,” Proc. SPIE 7920, 792006 (2011).
    [CrossRef]
  16. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao. “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef]
  17. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225(2008).
    [CrossRef]
  18. D. Helie, F. Lacroix, and R. Vallée, “Optical bonding reinforced by femtosecond laser welding,” Proc. SPIE 8126, 812612 (2011).
    [CrossRef]
  19. A. Horn, I. Mingareev, J. Gottmann, A. Werth, and U. Brenk, “Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation,” Meas. Sci. Technol. 19, 015302 (2008).
    [CrossRef]
  20. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2, 57–63 (2007).
    [CrossRef]
  21. I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
    [CrossRef]
  22. S. Richter, S. Döring, A. Tünnermann, and S. Nolte,” Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
    [CrossRef]

2011 (4)

D. Helie, F. Lacroix, and R. Vallée, “Optical bonding reinforced by femtosecond laser welding,” Proc. SPIE 8126, 812612 (2011).
[CrossRef]

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultrashort laser pulses,” Proc. SPIE 7920, 792006 (2011).
[CrossRef]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte,” Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

K. Cvecek, L. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultra short laser pulses yields higher seam strength,” Appl. Opt. 50, 1941–1944 (2011).
[CrossRef]

2010 (1)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phy. Proc. 5, 483–493(2010).
[CrossRef]

2008 (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225(2008).
[CrossRef]

A. Horn, I. Mingareev, J. Gottmann, A. Werth, and U. Brenk, “Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation,” Meas. Sci. Technol. 19, 015302 (2008).
[CrossRef]

2007 (4)

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2, 57–63 (2007).
[CrossRef]

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
[CrossRef]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep. 441, 47–189 (2007).

J. Haisma, N. Hattu, J. T. Pulles, E. Steding, and J. C. Vervest, “Direct bonding and beyond,” Appl. Opt. 46, 6793–6803 (2007).
[CrossRef]

2006 (2)

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” App. Phys. Let. 89, 021106 (2006).
[CrossRef]

W. Watanabe, T. Tamaki, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10468–10476 (2006).
[CrossRef]

2005 (2)

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, L687–L689 (2005).
[CrossRef]

2002 (1)

J. Haisma and G. A. C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. R 37, 1–60 (2002).
[CrossRef]

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

1996 (1)

1995 (1)

J. Haisma, G. A. C. M. Spierings, T. M. Michielson, and C. L. Adema, “Surface preparation and phenomenological aspects of direct bonding,” Philips J. Res. 49, 23–46 (1995).
[CrossRef]

1968 (1)

D. I. Pomerantz, “Anodic bonding,” U.S. patent 3,397,278 (13 August 1968).

Adema, C. L.

J. Haisma, G. A. C. M. Spierings, T. M. Michielson, and C. L. Adema, “Surface preparation and phenomenological aspects of direct bonding,” Philips J. Res. 49, 23–46 (1995).
[CrossRef]

Aközbek, N.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Alting, C. L.

J. Haisma, C. L. Alting, and T. M. Michielsen, “Method of manufacturing a semiconductor device,” U.S. patent 5,009,689 (23 May 1991).

Becker, A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Brenk, U.

A. Horn, I. Mingareev, J. Gottmann, A. Werth, and U. Brenk, “Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation,” Meas. Sci. Technol. 19, 015302 (2008).
[CrossRef]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Chin, S. L.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep. 441, 47–189 (2007).

Cvecek, K.

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultrashort laser pulses,” Proc. SPIE 7920, 792006 (2011).
[CrossRef]

K. Cvecek, L. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultra short laser pulses yields higher seam strength,” Appl. Opt. 50, 1941–1944 (2011).
[CrossRef]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phy. Proc. 5, 483–493(2010).
[CrossRef]

Davis, K. M.

Döring, S.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte,” Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

Frick, T.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225(2008).
[CrossRef]

Gottmann, J.

A. Horn, I. Mingareev, J. Gottmann, A. Werth, and U. Brenk, “Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation,” Meas. Sci. Technol. 19, 015302 (2008).
[CrossRef]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2, 57–63 (2007).
[CrossRef]

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
[CrossRef]

Haisma, J.

J. Haisma, N. Hattu, J. T. Pulles, E. Steding, and J. C. Vervest, “Direct bonding and beyond,” Appl. Opt. 46, 6793–6803 (2007).
[CrossRef]

J. Haisma and G. A. C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. R 37, 1–60 (2002).
[CrossRef]

J. Haisma, G. A. C. M. Spierings, T. M. Michielson, and C. L. Adema, “Surface preparation and phenomenological aspects of direct bonding,” Philips J. Res. 49, 23–46 (1995).
[CrossRef]

J. Haisma, C. L. Alting, and T. M. Michielsen, “Method of manufacturing a semiconductor device,” U.S. patent 5,009,689 (23 May 1991).

Hattu, N.

Helie, D.

D. Helie, F. Lacroix, and R. Vallée, “Optical bonding reinforced by femtosecond laser welding,” Proc. SPIE 8126, 812612 (2011).
[CrossRef]

Hirao, K.

Horn, A.

A. Horn, I. Mingareev, J. Gottmann, A. Werth, and U. Brenk, “Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation,” Meas. Sci. Technol. 19, 015302 (2008).
[CrossRef]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2, 57–63 (2007).
[CrossRef]

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
[CrossRef]

Hosseini, S. A.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Itoh, K.

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” App. Phys. Let. 89, 021106 (2006).
[CrossRef]

W. Watanabe, T. Tamaki, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10468–10476 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, L687–L689 (2005).
[CrossRef]

K. Itoh and T. Tamaki, “Substance joining method, substance joining device, joined body, and its manufacturing method,” U.S. patent 2010/0047587 (25 February 2010).

Kandidov, V. P.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Kosareva, O. G.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Lacroix, F.

D. Helie, F. Lacroix, and R. Vallée, “Optical bonding reinforced by femtosecond laser welding,” Proc. SPIE 8126, 812612 (2011).
[CrossRef]

Liu, W.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Luo, Q.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225(2008).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Michielsen, T. M.

J. Haisma, C. L. Alting, and T. M. Michielsen, “Method of manufacturing a semiconductor device,” U.S. patent 5,009,689 (23 May 1991).

Michielson, T. M.

J. Haisma, G. A. C. M. Spierings, T. M. Michielson, and C. L. Adema, “Surface preparation and phenomenological aspects of direct bonding,” Philips J. Res. 49, 23–46 (1995).
[CrossRef]

Mingareev, I.

A. Horn, I. Mingareev, J. Gottmann, A. Werth, and U. Brenk, “Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation,” Meas. Sci. Technol. 19, 015302 (2008).
[CrossRef]

Miura, K.

Miyamoto, I.

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultrashort laser pulses,” Proc. SPIE 7920, 792006 (2011).
[CrossRef]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phy. Proc. 5, 483–493(2010).
[CrossRef]

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
[CrossRef]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2, 57–63 (2007).
[CrossRef]

Miyamoto, L.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep. 441, 47–189 (2007).

Nishii, J.

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” App. Phys. Let. 89, 021106 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, L687–L689 (2005).
[CrossRef]

Nolte, S.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte,” Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

Okamoto, Y.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phy. Proc. 5, 483–493(2010).
[CrossRef]

Onda, S.

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” App. Phys. Let. 89, 021106 (2006).
[CrossRef]

Pomerantz, D. I.

D. I. Pomerantz, “Anodic bonding,” U.S. patent 3,397,278 (13 August 1968).

Pulles, J. T.

Richter, S.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte,” Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

Roth, S.

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultrashort laser pulses,” Proc. SPIE 7920, 792006 (2011).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Schmidt, M.

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultrashort laser pulses,” Proc. SPIE 7920, 792006 (2011).
[CrossRef]

K. Cvecek, L. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultra short laser pulses yields higher seam strength,” Appl. Opt. 50, 1941–1944 (2011).
[CrossRef]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phy. Proc. 5, 483–493(2010).
[CrossRef]

Schröder, H.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Spierings, G. A. C. M.

J. Haisma, G. A. C. M. Spierings, T. M. Michielson, and C. L. Adema, “Surface preparation and phenomenological aspects of direct bonding,” Philips J. Res. 49, 23–46 (1995).
[CrossRef]

Spierings, G. A. C.M.

J. Haisma and G. A. C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. R 37, 1–60 (2002).
[CrossRef]

Steding, E.

Strauss, J.

Sugimoto, N.

Tamaki, T.

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” App. Phys. Let. 89, 021106 (2006).
[CrossRef]

W. Watanabe, T. Tamaki, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10468–10476 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, L687–L689 (2005).
[CrossRef]

K. Itoh and T. Tamaki, “Substance joining method, substance joining device, joined body, and its manufacturing method,” U.S. patent 2010/0047587 (25 February 2010).

Théberge, F.

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

Tünnermann, A.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte,” Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

Vallée, R.

D. Helie, F. Lacroix, and R. Vallée, “Optical bonding reinforced by femtosecond laser welding,” Proc. SPIE 8126, 812612 (2011).
[CrossRef]

Vervest, J. C.

Watanabe, W.

W. Watanabe, T. Tamaki, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10468–10476 (2006).
[CrossRef]

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” App. Phys. Let. 89, 021106 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, L687–L689 (2005).
[CrossRef]

Werth, A.

A. Horn, I. Mingareev, J. Gottmann, A. Werth, and U. Brenk, “Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation,” Meas. Sci. Technol. 19, 015302 (2008).
[CrossRef]

Wolf, M.

Wortmann, D.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2, 57–63 (2007).
[CrossRef]

Yoshino, F.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2, 57–63 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

S. Richter, S. Döring, A. Tünnermann, and S. Nolte,” Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys. A 103, 257–261 (2011).
[CrossRef]

Can. J. Phys. (1)

S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[CrossRef]

J. Laser Micro/Nanoeng. (2)

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2, 57–63 (2007).
[CrossRef]

I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoeng. 2, 7–14 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, L687–L689 (2005).
[CrossRef]

Mater. Sci. Eng. R (1)

J. Haisma and G. A. C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry,” Mater. Sci. Eng. R 37, 1–60 (2002).
[CrossRef]

Meas. Sci. Technol. (2)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bluk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

A. Horn, I. Mingareev, J. Gottmann, A. Werth, and U. Brenk, “Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation,” Meas. Sci. Technol. 19, 015302 (2008).
[CrossRef]

Nature Photon. (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225(2008).
[CrossRef]

Opt. Express (1)

W. Watanabe, T. Tamaki, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10468–10476 (2006).
[CrossRef]

Opt. Lett. (1)

Philips J. Res. (1)

J. Haisma, G. A. C. M. Spierings, T. M. Michielson, and C. L. Adema, “Surface preparation and phenomenological aspects of direct bonding,” Philips J. Res. 49, 23–46 (1995).
[CrossRef]

Phy. Proc. (1)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phy. Proc. 5, 483–493(2010).
[CrossRef]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent solids,” Phys. Rep. 441, 47–189 (2007).

Proc. SPIE (2)

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultrashort laser pulses,” Proc. SPIE 7920, 792006 (2011).
[CrossRef]

D. Helie, F. Lacroix, and R. Vallée, “Optical bonding reinforced by femtosecond laser welding,” Proc. SPIE 8126, 812612 (2011).
[CrossRef]

Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses (1)

J. Nishii, W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” App. Phys. Let. 89, 021106 (2006).
[CrossRef]

Other (3)

J. Haisma, C. L. Alting, and T. M. Michielsen, “Method of manufacturing a semiconductor device,” U.S. patent 5,009,689 (23 May 1991).

D. I. Pomerantz, “Anodic bonding,” U.S. patent 3,397,278 (13 August 1968).

K. Itoh and T. Tamaki, “Substance joining method, substance joining device, joined body, and its manufacturing method,” U.S. patent 2010/0047587 (25 February 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

a, Partial direct bonding of two fused silica windows where fringes observed in the periphery relate to a pending gap between the surfaces. b, Total direct-bonding of two fused silica windows.

Fig. 2.
Fig. 2.

Direct-bonded fused silica–silicon assembly reinforced by a circular weld seam, which halts the lift-off of optical contact from outside the sealed region and preserves an optical transmission window.

Fig. 3.
Fig. 3.

Illustration of experimental setup used for welding.

Fig. 4.
Fig. 4.

Cross-section views of weld lines observed through SEM (left) and optical (right) microscopes between two direct bonded fused silica plates; 500 nJ pulses are incident from the top of the images.

Fig. 5.
Fig. 5.

Cross-section views of weld lines written at different pulse energies viewed through an SEM microscope at the direct bonded interface between BK7 and fused silica windows; the pulses are incident from the bottom of the images.

Fig. 6.
Fig. 6.

Photograph of the setup used for shear strength measurements.

Fig. 7.
Fig. 7.

Illustration and microscope image of laser weld seam geometry.

Fig. 8.
Fig. 8.

Weibull plot of shear stress measurements on direct bonded fused silica windows with and without laser reinforcement. For reinforced assemblies, an 8×12mm rectangular region was sealed by 11 weld lines.

Fig. 9.
Fig. 9.

Photograph of two direct bonded fused silica–BK7 assemblies reinforced by circular weld lines after thermal shock treatments, inducing a brittle rupture of material. The circular 50 weld line seam (left) preserved the optical contact inside the sealed area after a thermal shock of 250 °C. To the right, the optical contact was broken at a temperature of 200 °C for a similar sample reinforced with 11 weld lines.

Fig. 10.
Fig. 10.

Photographs of a direct bond between fused silica and silicon reinforced by 100 rectangular weld lines (a) before and (b) after a thermal shock at 250 °C.

Fig. 11.
Fig. 11.

Optical transmission as function of wavelength.

Tables (4)

Tables Icon

Table 1. Laser Exposure Parameters for Welding Experiments

Tables Icon

Table 2. Statistical Parameters of Shear Strength Measurements and Evaluation of Weld Seam Strength

Tables Icon

Table 3. Thermal Shock Measurements and Observations for Fused Silica–BK7 Assemblies

Tables Icon

Table 4. Thermal Shock Measurements and Observations for Fused Silica–Silicon Assemblies

Metrics