Abstract

Thin-shelled composite mirrors have been recently proposed for use as deformable mirrors in optical systems. Large-diameter deformable composite mirrors can be used in the development of active optical zoom systems. We present the fabrication, testing, and modeling of a prototype 0.2 m diameter carbon fiber reinforced polymer mirror for use as a deformable mirror. In addition, three actuation techniques have been modeled and will be presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).
  2. B. Coughenour, S. M. Ammons, M. Hart, R. Romeo, R. Martin, M. Rademacher, and H. Bailey, “Demonstration of a robust carbon fiber reinforced polymer deformable mirror with low surface error,” Proc. SPIE 7736, 77363I (2010).
    [CrossRef]
  3. C. M. Hinckley, “A statistical evaluation of the variation in laminated composite properties resulting from ply misalignment (U),” Sandia Report, SAND90-8205 (Sandia National Laboratories, 1990).
  4. C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
    [CrossRef]
  5. D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
    [CrossRef]
  6. J. M. Hodgkinson, Mechanical Testing of Advanced Fibre Composites (Woodhead, 2000).
  7. V. Ronchi, “Forty years of history of a grating interferometer,” Appl. Opt. 3, 437–451 (1964).
    [CrossRef]
  8. Zygo Corp., http://www.zygo.com/ .
  9. M. Birnbaum, “Adjusting curvatures of large mirrors and lenses,” NASA Tech Briefs 16(9), 68– 72 (1992).

2011 (1)

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

2010 (1)

B. Coughenour, S. M. Ammons, M. Hart, R. Romeo, R. Martin, M. Rademacher, and H. Bailey, “Demonstration of a robust carbon fiber reinforced polymer deformable mirror with low surface error,” Proc. SPIE 7736, 77363I (2010).
[CrossRef]

2005 (1)

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

1992 (1)

M. Birnbaum, “Adjusting curvatures of large mirrors and lenses,” NASA Tech Briefs 16(9), 68– 72 (1992).

1964 (1)

Ammons, S. M.

B. Coughenour, S. M. Ammons, M. Hart, R. Romeo, R. Martin, M. Rademacher, and H. Bailey, “Demonstration of a robust carbon fiber reinforced polymer deformable mirror with low surface error,” Proc. SPIE 7736, 77363I (2010).
[CrossRef]

Andrews, J. R.

S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).

Bagwell, B. E.

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

Bailey, H.

B. Coughenour, S. M. Ammons, M. Hart, R. Romeo, R. Martin, M. Rademacher, and H. Bailey, “Demonstration of a robust carbon fiber reinforced polymer deformable mirror with low surface error,” Proc. SPIE 7736, 77363I (2010).
[CrossRef]

Baker, M. S.

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

Birnbaum, M.

M. Birnbaum, “Adjusting curvatures of large mirrors and lenses,” NASA Tech Briefs 16(9), 68– 72 (1992).

Boyce, B. L.

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

Breivik, N. L.

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

Coughenour, B.

B. Coughenour, S. M. Ammons, M. Hart, R. Romeo, R. Martin, M. Rademacher, and H. Bailey, “Demonstration of a robust carbon fiber reinforced polymer deformable mirror with low surface error,” Proc. SPIE 7736, 77363I (2010).
[CrossRef]

Hart, M.

B. Coughenour, S. M. Ammons, M. Hart, R. Romeo, R. Martin, M. Rademacher, and H. Bailey, “Demonstration of a robust carbon fiber reinforced polymer deformable mirror with low surface error,” Proc. SPIE 7736, 77363I (2010).
[CrossRef]

Hinckley, C. M.

C. M. Hinckley, “A statistical evaluation of the variation in laminated composite properties resulting from ply misalignment (U),” Sandia Report, SAND90-8205 (Sandia National Laboratories, 1990).

Hodgkinson, J. M.

J. M. Hodgkinson, Mechanical Testing of Advanced Fibre Composites (Woodhead, 2000).

Martin, R.

B. Coughenour, S. M. Ammons, M. Hart, R. Romeo, R. Martin, M. Rademacher, and H. Bailey, “Demonstration of a robust carbon fiber reinforced polymer deformable mirror with low surface error,” Proc. SPIE 7736, 77363I (2010).
[CrossRef]

S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).

Martin, R. N.

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

Martinez, T.

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).

Payne, D. M.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).

Rademacher, M.

B. Coughenour, S. M. Ammons, M. Hart, R. Romeo, R. Martin, M. Rademacher, and H. Bailey, “Demonstration of a robust carbon fiber reinforced polymer deformable mirror with low surface error,” Proc. SPIE 7736, 77363I (2010).
[CrossRef]

Restaino, S. R.

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).

Romeo, R.

B. Coughenour, S. M. Ammons, M. Hart, R. Romeo, R. Martin, M. Rademacher, and H. Bailey, “Demonstration of a robust carbon fiber reinforced polymer deformable mirror with low surface error,” Proc. SPIE 7736, 77363I (2010).
[CrossRef]

S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).

Romeo, R. C.

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

Ronchi, V.

Santiago, F.

S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).

Sweatt, W. C.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Teare, S. W.

S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).

Wick, D. V.

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Wilcox, C. C.

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).

Appl. Opt. (1)

NASA Tech Briefs (1)

M. Birnbaum, “Adjusting curvatures of large mirrors and lenses,” NASA Tech Briefs 16(9), 68– 72 (1992).

Proc. SPIE (3)

B. Coughenour, S. M. Ammons, M. Hart, R. Romeo, R. Martin, M. Rademacher, and H. Bailey, “Demonstration of a robust carbon fiber reinforced polymer deformable mirror with low surface error,” Proc. SPIE 7736, 77363I (2010).
[CrossRef]

C. C. Wilcox, D. V. Wick, B. E. Bagwell, R. C. Romeo, R. N. Martin, M. S. Baker, N. L. Breivik, B. L. Boyce, T. Martinez, and S. R. Restaino, “Actuation for deformable thin-shelled composite mirrors,” Proc. SPIE 8031, 80310N (2011).
[CrossRef]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[CrossRef]

Other (4)

J. M. Hodgkinson, Mechanical Testing of Advanced Fibre Composites (Woodhead, 2000).

Zygo Corp., http://www.zygo.com/ .

C. M. Hinckley, “A statistical evaluation of the variation in laminated composite properties resulting from ply misalignment (U),” Sandia Report, SAND90-8205 (Sandia National Laboratories, 1990).

S. R. Restaino, C. C. Wilcox, J. R. Andrews, T. Martinez, F. Santiago, S. W. Teare, R. Romeo, R. Martin, and D. M. Payne, “16ʺ OTA prototype telescope project at the Naval Research Laboratory,” in Proceedings of the 2005, AMOS Technical Conference (Maui Economic Development Board, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Four-point material bend test configuration.

Fig. 2.
Fig. 2.

Results from four-point bend test for coupons made from 16 plies of CFRP.

Fig. 3.
Fig. 3.

Results from four-point bend test for coupons made from 24 plies of CFRP.

Fig. 4.
Fig. 4.

Ronchi image comparison between CFRP mirrors of (a) 16 and (b) 24 plies.

Fig. 5.
Fig. 5.

The prototype 0.2 m CFRP mirror measured with a Zygo interferometer.

Fig. 6.
Fig. 6.

(a) Interference pattern and (b) surface measurement.

Fig. 7.
Fig. 7.

Predicted (left) and measured (right) surfaces supported with three points under single-point force load from the rear of (a) 0.86 N, (b) 1.26 N, (c) 2.00 N, (d) 2.06 N, (e) 2.60 N, (f) 3.10 N, and (g) 3.52 N.

Fig. 8.
Fig. 8.

Radius of curvature versus pressure for uniformly distributed pressure.

Fig. 9.
Fig. 9.

(a) Surface plot and (b) cross-sectional profile of deviation from a best-fit sphere with radius of curvature of 1.25 m for uniformly distributed pressure.

Fig. 10.
Fig. 10.

Radius of curvature versus force for radial inward force.

Fig. 11.
Fig. 11.

(a) Surface plot and (b) cross-sectional profile of deviation from a best-fit sphere with radius of curvature of 1.25 m for radial inward force.

Fig. 12.
Fig. 12.

Radius of curvature versus rotation angle for tangential force.

Fig. 13.
Fig. 13.

(a) Surface plot and (b) cross-sectional profile of deviation from a best-fit sphere with radius of curvature of 1.25 m for tangential force.

Tables (2)

Tables Icon

Table 1. Aberrations in Relaxed 0.2 Meter CFRP Mirror

Tables Icon

Table 2. Resulting RMS Error between Modeling and Measurement

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

RMS=100×i=1Nj=1N|Pi,jMi,j|N2

Metrics