Abstract

A technique that allows a fiber optic Sagnac interferometer based microwave photonic device to be implemented using non-polarization maintaining components inside the Sagnac loop while still obtaining an output that is insensitive to changes in environmental conditions is presented. It is based on inserting the non-polarization maintaining components in between a polarization beam combiner and a Faraday rotator mirror inside the loop. The technique also introduces a phase bias to the light propagating inside the loop. Experimental results demonstrate that the discretely and continuously tunable Sagnac loop based signal processors implemented using non-polarization maintaining components have an environmentally insensitive frequency response.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. X. Sun, M. M. Fejer, E. Gustafson, and R. L. Byer, “Sagnac interferometer for gravitational-wave detection,” Phys. Rev. Lett. 76, 3053–3056 (1996).
    [CrossRef]
  2. M. L. Dennis, I. N. Duling III, and W. K. Burns, “Inherently bias drift free amplitude modulator,” Electron. Lett. 32, 547–548 (1996).
    [CrossRef]
  3. M. Y. Frankel and R. D. Esman, “Optical single-sideband suppressed-carrier modulator for wide-band signal processing,” J. Lightwave Technol. 16, 859–863 (1998).
    [CrossRef]
  4. E. H. W. Chan and R. A. Minasian, “Coherence-free photonic notch filter,” Electron. Lett. 40, 1375–1377 (2004).
    [CrossRef]
  5. G. Ning and P. Shum, “Coherence-free microwave photonic notch filter with a single driver intensity modulator in a Sagnac fiber loop,” Appl. Opt. 46, 7179–7183 (2007).
    [CrossRef]
  6. E. H. W. Chan and R. A. Minasian, “Widely tuneable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol. 26, 922–927 (2008).
    [CrossRef]
  7. E. H. W. Chan and R. A. Minasian, “A new optical phase modulator dynamic response measurement technique,” J. Lightwave Technol. 26, 2882–2888 (2008).
    [CrossRef]
  8. S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
    [CrossRef]
  9. G. D. VanWiggeren and R. Roy, “Transmission of linearly polarized light through a single-mode fiber with random fluctuations of birefringence,” Appl. Opt. 38, 3888–3892 (1999).
    [CrossRef]
  10. F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” J. Lightwave Technol. 12, 690–699 (1994).
    [CrossRef]
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  12. D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
    [CrossRef]

2008 (2)

2007 (1)

2004 (1)

E. H. W. Chan and R. A. Minasian, “Coherence-free photonic notch filter,” Electron. Lett. 40, 1375–1377 (2004).
[CrossRef]

1999 (1)

1998 (1)

1996 (3)

K. X. Sun, M. M. Fejer, E. Gustafson, and R. L. Byer, “Sagnac interferometer for gravitational-wave detection,” Phys. Rev. Lett. 76, 3053–3056 (1996).
[CrossRef]

M. L. Dennis, I. N. Duling III, and W. K. Burns, “Inherently bias drift free amplitude modulator,” Electron. Lett. 32, 547–548 (1996).
[CrossRef]

S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
[CrossRef]

1994 (1)

F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” J. Lightwave Technol. 12, 690–699 (1994).
[CrossRef]

1988 (1)

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[CrossRef]

Burns, W. K.

M. L. Dennis, I. N. Duling III, and W. K. Burns, “Inherently bias drift free amplitude modulator,” Electron. Lett. 32, 547–548 (1996).
[CrossRef]

Byer, R. L.

K. X. Sun, M. M. Fejer, E. Gustafson, and R. L. Byer, “Sagnac interferometer for gravitational-wave detection,” Phys. Rev. Lett. 76, 3053–3056 (1996).
[CrossRef]

Chan, E. H. W.

Dennis, M. L.

M. L. Dennis, I. N. Duling III, and W. K. Burns, “Inherently bias drift free amplitude modulator,” Electron. Lett. 32, 547–548 (1996).
[CrossRef]

Duling III, I. N.

M. L. Dennis, I. N. Duling III, and W. K. Burns, “Inherently bias drift free amplitude modulator,” Electron. Lett. 32, 547–548 (1996).
[CrossRef]

Esman, R. D.

Fejer, M. M.

K. X. Sun, M. M. Fejer, E. Gustafson, and R. L. Byer, “Sagnac interferometer for gravitational-wave detection,” Phys. Rev. Lett. 76, 3053–3056 (1996).
[CrossRef]

Frankel, M. Y.

Gustafson, E.

K. X. Sun, M. M. Fejer, E. Gustafson, and R. L. Byer, “Sagnac interferometer for gravitational-wave detection,” Phys. Rev. Lett. 76, 3053–3056 (1996).
[CrossRef]

Heismann, F.

F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” J. Lightwave Technol. 12, 690–699 (1994).
[CrossRef]

Hotate, K.

S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
[CrossRef]

Ito, M.

S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
[CrossRef]

Minasian, R. A.

Mortimore, D. B.

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[CrossRef]

Ning, G.

Roy, R.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Shum, P.

Sun, K. X.

K. X. Sun, M. M. Fejer, E. Gustafson, and R. L. Byer, “Sagnac interferometer for gravitational-wave detection,” Phys. Rev. Lett. 76, 3053–3056 (1996).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

VanWiggeren, G. D.

Yamashita, S.

S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (2)

E. H. W. Chan and R. A. Minasian, “Coherence-free photonic notch filter,” Electron. Lett. 40, 1375–1377 (2004).
[CrossRef]

M. L. Dennis, I. N. Duling III, and W. K. Burns, “Inherently bias drift free amplitude modulator,” Electron. Lett. 32, 547–548 (1996).
[CrossRef]

J. Lightwave Technol. (6)

S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
[CrossRef]

F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” J. Lightwave Technol. 12, 690–699 (1994).
[CrossRef]

M. Y. Frankel and R. D. Esman, “Optical single-sideband suppressed-carrier modulator for wide-band signal processing,” J. Lightwave Technol. 16, 859–863 (1998).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Widely tuneable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol. 26, 922–927 (2008).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “A new optical phase modulator dynamic response measurement technique,” J. Lightwave Technol. 26, 2882–2888 (2008).
[CrossRef]

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988).
[CrossRef]

Phys. Rev. Lett. (1)

K. X. Sun, M. M. Fejer, E. Gustafson, and R. L. Byer, “Sagnac interferometer for gravitational-wave detection,” Phys. Rev. Lett. 76, 3053–3056 (1996).
[CrossRef]

Other (1)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Fiber optic Sagnac interferometer based microwave photonic device that has an environmental insensitive output. Bold lines indicate polarization maintaining components.

Fig. 2.
Fig. 2.

Experimental setup of a discretely tunable Sagnac loop based signal processor. Bold lines indicate polarization maintaining components.

Fig. 3.
Fig. 3.

Measured frequency responses of the discretely tunable Sagnac loop based signal processor (a) with and (b) without the PBC and the FRM inside the loop, for different laser wavelengths.

Fig. 4.
Fig. 4.

Experimental setup of the continuously tunable Sagnac loop based signal processor. Bold lines indicate polarization maintaining components.

Fig. 5.
Fig. 5.

Measured frequency responses of the continuously tunable Sagnac loop based signal processor (a) with and (b) without the PBCs and the FRMs inside the loop, for different laser wavelengths.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

JCW,port1=JNPMC,backJFRMJNPMC,forJPBC31JCW,port3,
JCW,port3=[01].
JNPMC,back=JQWP(α)·JHWP(γ)·JQWP(α+ε),
JNPMC,for=JQWP(α+ε)·JHWP(γ)·JQWP(α),
JCW,port1=[10].
JCW,port2=[01].
JCCW,port1=JNPMC,backJFRMJNPMC,forJPBC21JCCW,port2,
JCCW,port2=[01].
JCCW,port1=[01].
JCCW,port3=[01].

Metrics