Abstract

A simple but effective fringe projection profilometry is proposed to measure 3D shape by using one snapshot color sinusoidal fringe pattern. One color fringe pattern encoded with a sinusoidal fringe (as red component) and one uniform intensity pattern (as blue component) is projected by a digital video projector, and the deformed fringe pattern is recorded by a color CCD camera. The captured color fringe pattern is separated into its RGB components and division operation is applied to red and blue channels to reduce the variable reflection intensity. Shape information of the tested object is decoded by applying an arcsine algorithm on the normalized fringe pattern with subpixel resolution. In the case of fringe discontinuities caused by height steps, or spatially isolated surfaces, the separated blue component is binarized and used for correcting the phase demodulation. A simple and robust method is also introduced to compensate for nonlinear intensity response of the digital video projector. The experimental results demonstrate the validity of the proposed method.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
    [CrossRef]
  2. Z. Wang, H. Du, S. Park, and H. M. Xie, “Three-dimensional shape measurement with a fast and accurate approach,” Appl. Opt. 48, 1052–1061 (2009).
    [CrossRef]
  3. J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3D shape measurement: color coupling and imbalance compensation,” Proc. SPIE 5265, 205–212 (2004).
    [CrossRef]
  4. P. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
    [CrossRef]
  5. B. Pan, K. M. Qian, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifted digital fringe projection profilometry,” Opt. Lett. 34, 416–418 (2009).
    [CrossRef]
  6. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
    [CrossRef]
  7. X. Y. Su and Q. C. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Lasers Eng. 48, 191–204 (2010).
    [CrossRef]
  8. W.-H. Su, “Color-encoded fringe projection for 3D shape measurements,” Opt. Express 15, 13167–13181 (2007).
    [CrossRef]
  9. W.-H. Su, “Projected fringe profilometry using the area encoded algorithm for spatially isolated and dynamic objects,” Opt. Express 16, 2590–2596 (2008).
    [CrossRef]
  10. Z. H. Zhang, C. E. Towers, and D. P. Towers, “Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency selection,” Opt. Express 14, 6444–6455 (2006).
    [CrossRef]
  11. Z. H. Zhang, D. P. Towers, and C. E. Towers, “Snapshot color fringe projection for absolute three-dimensional metrology of video sequences,” Appl. Opt. 49, 5947–5953 (2010).
    [CrossRef]
  12. K. Liu, Y. C. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18, 5229–5244(2010).
    [CrossRef]
  13. M. Takeda, Q. Gu, M. Kinoshita, H. Takai, and Y. Takahashi, “Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations,” Appl. Opt. 36, 5347–5354(1997).
    [CrossRef]
  14. S. Zhang and P. S. Huang, “High-resolution real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601 (2006).
    [CrossRef]
  15. S. Zhang, D. Royer, and S. T. Yau, “GPU-assisted high-resolution, real-time 3-D shape measurement,” Opt. Express 14, 9120–9129 (2006).
    [CrossRef]
  16. Z. Y. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
    [CrossRef]
  17. S. Q. Wu, S. Y. Zhang, Y. Zhang, and X. Z. Ye, “Phase error correction by π-shift odd-step fringe projection and speckle filtering in phase measuring profilometry,” Opt. Eng. 49, 043603 (2010).
    [CrossRef]
  18. Zh. W. Li, Y. S. Shi, C. J. Wang, and Y. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
    [CrossRef]
  19. H. W. Guo, H. T. He, and M. Y. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43, 2906–2914 (2004).
    [CrossRef]
  20. S. Zhang and S. T. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” Appl. Opt. 46, 36–43 (2007).
    [CrossRef]
  21. http://en.wikipedia.org/wiki/Color_depth#Truecolor .
  22. M. Servin, J. L. Marroguin, and F. J. Cuevas, “Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms,” J. Opt. Soc. Am. A 18, 689–695(2001).
    [CrossRef]
  23. J. A. Quiroga, J. A. Gomez-Pedrero, and A. Garcia-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51(2001).
    [CrossRef]
  24. http://www.alliedvisiontec.com/uploads/tx_nawavtcamera/ICX204-web_01.jpg .
  25. F. J. Yang, M. L. Dai, X. Y. He, and X. L. Du, “Single fringe projection profilometry based on sinusoidal intensity normalization and subpixel fitting,” Opt. Lasers Eng. 49, 1254–1263(2011).
    [CrossRef]
  26. H. A. Aebischer and W. Stephan, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun. 162, 205–210 (1999).
    [CrossRef]

2011 (1)

F. J. Yang, M. L. Dai, X. Y. He, and X. L. Du, “Single fringe projection profilometry based on sinusoidal intensity normalization and subpixel fitting,” Opt. Lasers Eng. 49, 1254–1263(2011).
[CrossRef]

2010 (5)

X. Y. Su and Q. C. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

Z. Y. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

S. Q. Wu, S. Y. Zhang, Y. Zhang, and X. Z. Ye, “Phase error correction by π-shift odd-step fringe projection and speckle filtering in phase measuring profilometry,” Opt. Eng. 49, 043603 (2010).
[CrossRef]

K. Liu, Y. C. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18, 5229–5244(2010).
[CrossRef]

Z. H. Zhang, D. P. Towers, and C. E. Towers, “Snapshot color fringe projection for absolute three-dimensional metrology of video sequences,” Appl. Opt. 49, 5947–5953 (2010).
[CrossRef]

2009 (2)

2008 (2)

W.-H. Su, “Projected fringe profilometry using the area encoded algorithm for spatially isolated and dynamic objects,” Opt. Express 16, 2590–2596 (2008).
[CrossRef]

Zh. W. Li, Y. S. Shi, C. J. Wang, and Y. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

2007 (2)

2006 (3)

2004 (2)

H. W. Guo, H. T. He, and M. Y. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43, 2906–2914 (2004).
[CrossRef]

J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3D shape measurement: color coupling and imbalance compensation,” Proc. SPIE 5265, 205–212 (2004).
[CrossRef]

2003 (1)

P. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[CrossRef]

2001 (3)

J. A. Quiroga, J. A. Gomez-Pedrero, and A. Garcia-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51(2001).
[CrossRef]

M. Servin, J. L. Marroguin, and F. J. Cuevas, “Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms,” J. Opt. Soc. Am. A 18, 689–695(2001).
[CrossRef]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[CrossRef]

1999 (1)

H. A. Aebischer and W. Stephan, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun. 162, 205–210 (1999).
[CrossRef]

1997 (1)

1983 (1)

Aebischer, H. A.

H. A. Aebischer and W. Stephan, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun. 162, 205–210 (1999).
[CrossRef]

Asundi, A.

Barnes, J. C.

Z. Y. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

Chen, M. Y.

Chiang, F. P.

J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3D shape measurement: color coupling and imbalance compensation,” Proc. SPIE 5265, 205–212 (2004).
[CrossRef]

P. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[CrossRef]

Cuevas, F. J.

Dai, M. L.

F. J. Yang, M. L. Dai, X. Y. He, and X. L. Du, “Single fringe projection profilometry based on sinusoidal intensity normalization and subpixel fitting,” Opt. Lasers Eng. 49, 1254–1263(2011).
[CrossRef]

Du, H.

Du, X. L.

F. J. Yang, M. L. Dai, X. Y. He, and X. L. Du, “Single fringe projection profilometry based on sinusoidal intensity normalization and subpixel fitting,” Opt. Lasers Eng. 49, 1254–1263(2011).
[CrossRef]

Garcia-Botella, A.

J. A. Quiroga, J. A. Gomez-Pedrero, and A. Garcia-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51(2001).
[CrossRef]

Gomez-Pedrero, J. A.

J. A. Quiroga, J. A. Gomez-Pedrero, and A. Garcia-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51(2001).
[CrossRef]

Gu, Q.

Guo, H. W.

Hao, Q.

Hassebrook, L. G.

He, H. T.

He, X. Y.

F. J. Yang, M. L. Dai, X. Y. He, and X. L. Du, “Single fringe projection profilometry based on sinusoidal intensity normalization and subpixel fitting,” Opt. Lasers Eng. 49, 1254–1263(2011).
[CrossRef]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[CrossRef]

Huang, L.

Huang, P. S.

S. Zhang and P. S. Huang, “High-resolution real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601 (2006).
[CrossRef]

J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3D shape measurement: color coupling and imbalance compensation,” Proc. SPIE 5265, 205–212 (2004).
[CrossRef]

P. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[CrossRef]

Kinoshita, M.

Lau, D. L.

Li, Zh. W.

Zh. W. Li, Y. S. Shi, C. J. Wang, and Y. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

Liu, K.

Marroguin, J. L.

Mutoh, K.

Nguyen, D. A.

Z. Y. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

Pan, B.

Pan, J. H.

J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3D shape measurement: color coupling and imbalance compensation,” Proc. SPIE 5265, 205–212 (2004).
[CrossRef]

Park, S.

Qian, K. M.

Quan, C.

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[CrossRef]

Quiroga, J. A.

J. A. Quiroga, J. A. Gomez-Pedrero, and A. Garcia-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51(2001).
[CrossRef]

Royer, D.

Servin, M.

Shang, H. M.

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[CrossRef]

Shi, Y. S.

Zh. W. Li, Y. S. Shi, C. J. Wang, and Y. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

Stephan, W.

H. A. Aebischer and W. Stephan, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun. 162, 205–210 (1999).
[CrossRef]

Su, W.-H.

Su, X. Y.

X. Y. Su and Q. C. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

Takahashi, Y.

Takai, H.

Takeda, M.

Tay, C. J.

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[CrossRef]

Towers, C. E.

Towers, D. P.

Wang, C. F.

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[CrossRef]

Wang, C. J.

Zh. W. Li, Y. S. Shi, C. J. Wang, and Y. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

Wang, Y. C.

Wang, Y. Y.

Zh. W. Li, Y. S. Shi, C. J. Wang, and Y. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

Wang, Z.

Wang, Z. Y.

Z. Y. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

Wu, S. Q.

S. Q. Wu, S. Y. Zhang, Y. Zhang, and X. Z. Ye, “Phase error correction by π-shift odd-step fringe projection and speckle filtering in phase measuring profilometry,” Opt. Eng. 49, 043603 (2010).
[CrossRef]

Xie, H. M.

Yang, F. J.

F. J. Yang, M. L. Dai, X. Y. He, and X. L. Du, “Single fringe projection profilometry based on sinusoidal intensity normalization and subpixel fitting,” Opt. Lasers Eng. 49, 1254–1263(2011).
[CrossRef]

Yau, S. T.

Ye, X. Z.

S. Q. Wu, S. Y. Zhang, Y. Zhang, and X. Z. Ye, “Phase error correction by π-shift odd-step fringe projection and speckle filtering in phase measuring profilometry,” Opt. Eng. 49, 043603 (2010).
[CrossRef]

Zhang, C. P.

P. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[CrossRef]

Zhang, Q. C.

X. Y. Su and Q. C. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

Zhang, S.

Zhang, S. Y.

S. Q. Wu, S. Y. Zhang, Y. Zhang, and X. Z. Ye, “Phase error correction by π-shift odd-step fringe projection and speckle filtering in phase measuring profilometry,” Opt. Eng. 49, 043603 (2010).
[CrossRef]

Zhang, Y.

S. Q. Wu, S. Y. Zhang, Y. Zhang, and X. Z. Ye, “Phase error correction by π-shift odd-step fringe projection and speckle filtering in phase measuring profilometry,” Opt. Eng. 49, 043603 (2010).
[CrossRef]

Zhang, Z. H.

Appl. Opt. (6)

J. Opt. Soc. Am. A (1)

Opt. Commun. (3)

J. A. Quiroga, J. A. Gomez-Pedrero, and A. Garcia-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43–51(2001).
[CrossRef]

H. A. Aebischer and W. Stephan, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun. 162, 205–210 (1999).
[CrossRef]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[CrossRef]

Opt. Eng. (4)

P. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[CrossRef]

S. Zhang and P. S. Huang, “High-resolution real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601 (2006).
[CrossRef]

S. Q. Wu, S. Y. Zhang, Y. Zhang, and X. Z. Ye, “Phase error correction by π-shift odd-step fringe projection and speckle filtering in phase measuring profilometry,” Opt. Eng. 49, 043603 (2010).
[CrossRef]

Zh. W. Li, Y. S. Shi, C. J. Wang, and Y. Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lasers Eng. (3)

F. J. Yang, M. L. Dai, X. Y. He, and X. L. Du, “Single fringe projection profilometry based on sinusoidal intensity normalization and subpixel fitting,” Opt. Lasers Eng. 49, 1254–1263(2011).
[CrossRef]

Z. Y. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

X. Y. Su and Q. C. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3D shape measurement: color coupling and imbalance compensation,” Proc. SPIE 5265, 205–212 (2004).
[CrossRef]

Other (2)

http://en.wikipedia.org/wiki/Color_depth#Truecolor .

http://www.alliedvisiontec.com/uploads/tx_nawavtcamera/ICX204-web_01.jpg .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Three images for illustrating nonlinear response and calibration procedure of the LCD projector. (a)–(c) Corresponding to input grayvalue of subarea A, B, C, and D are 0, 127, and 255, respectively. [The intensity distribution of cross-section n-n is superposed on the image in (a).]

Fig. 2.
Fig. 2.

Nonlinear response curves of the LCD projector used in the present research.

Fig. 3.
Fig. 3.

Fourth-order polynomial fitting curve of the LCD projector input-output response.

Fig. 4.
Fig. 4.

Fringe patterns acquired by camera (a) without and (c) with the projector’s gamma correction, respectively; (b) and (d) intensity distributions of the same cross-section A-A and B-B as shown in (a) and (c), respectively.

Fig. 5.
Fig. 5.

Schematic diagram of color sensor response.

Fig. 6.
Fig. 6.

(a)–(d) Color fringe image acquired by a color CCD camera and its RGB components, (e) image results from the division operation applied to image in (b) and (d). The background is clipped to enhance the detail of the fringes, (f) binary image obtained from (d).

Fig. 7.
Fig. 7.

Unwrapped phases of (a) the plate derived from phase-shifting method and (b) the tested face-mask obtained from the proposed method presenting in Subsection 2.B.

Fig. 8.
Fig. 8.

3D phase distributions obtained by (a) the proposed and (b) four-step phase-shifting methods, respectively. [The phase noise around the eyes shown in (b) is clipped.]

Fig. 9.
Fig. 9.

Sequential images of moving hands captured by a color CCD camera.

Fig. 10.
Fig. 10.

3D gesture reconstructions of moving hands corresponding to the images shown in Fig. 9.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Iv(x,y)=127.5×[1+sin(2πfx)]
Ih(x,y)=127.5×[1+sin(2πfy)],
I(x,y)=A(x,y)+R(x,y){1+sin[2πfx+φ(x,y)]},
I(x,y)=R(x,y)[1+sinΨ(x,y)],
I(x,y)=R(x,y)((kr+kg)[1+sinΨ(x,y)]+kg+kb),
g(x,y)=sinΨ(x,y).
Ψ(x,y)={arcsin[g(x,y)]g(x,y)[1,1)π+arcsin[g(x,y)]g(x,y)[1,1).

Metrics