Abstract

We consider the crystallization of ITO films induced by excited atomic oxygen. Owing to it, transmittance of these films in visible ranges increased by 20% and surface impedance dropped from 36 down to 4.6Ω/□. The treatment temperature (127 °C) was significantly below that of conventional crystallization (320 °C). Application of elastic light scattering diagnostics shows that rms surface roughness increased from 2.65 nm up to 4.07 nm after film treatment. ITO treatment does not change isotropic azimuthal structure of the surface.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Shun’ko and V. S. Belkin, “Cleaning properties of atomic oxygen excited to metastable state 2s22p4(S01),” J. Appl. Phys. 102, 083304 (2007).
    [CrossRef]
  2. E. V. Shun’ko and V. S. Belkin, “Cleaning and improving adhesion of surfaces by their treatment with afterglow products of DBD in N2,” in Seventh International Symposium on Polymer Surface Modification, K. L. Mittal and R. H. Lacombe, eds. (University of Maine, 2009), pp. 11–17. http://www.mstconf.com/UMainePresentations2009/ShunkoCleaningImprovingAdhesionN2.pdf .
  3. Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).
  4. S. Nader, “Comment on Cleaning properties of atomic oxygen excited to metastable state 2s2p4s(S10),’” J. Appl. Phys. 103, 106105 (2008).
    [CrossRef]
  5. S. Takayama, A. Tanaka, T. Sugawara, and T. Himuro, “Effects of oxygen gas annealing on electrical properties and internal stress in indium tin oxide films,” Jpn. J. Appl. Phys. 41, L619–L621 (2002).
  6. J. C. Stover, “Optical Scattering: Measurements and Analysis,” 2nd ed. (SPIE, 1995).
  7. V. Sterligov and P. Cheyssac, “Apparatus and method for optical object characterization,” French patent no. 0115232, deposited by the CNRS on 23 November 2001.
  8. G. E. Fernandes, Y. L. Pan, R. K. Chang, K. Aptowicz, and R. G. Pinnick, “Simultaneous forward- and backward-hemisphere elastic-light-scattering patterns of respirable-size aerosols,” Opt. Lett. 31, 3034–3036 (2006).
    [CrossRef]
  9. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
    [CrossRef]
  10. N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films,” J. Vac. Sci. Technol. A 19, 1636–1641(2001).
    [CrossRef]
  11. S. K. Choi and J. I. Lee, “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering,” J. Vac. Sci. Technol. A 19, 2043–2047 (2001).
    [CrossRef]

2008 (1)

S. Nader, “Comment on Cleaning properties of atomic oxygen excited to metastable state 2s2p4s(S10),’” J. Appl. Phys. 103, 106105 (2008).
[CrossRef]

2007 (1)

E. V. Shun’ko and V. S. Belkin, “Cleaning properties of atomic oxygen excited to metastable state 2s22p4(S01),” J. Appl. Phys. 102, 083304 (2007).
[CrossRef]

2006 (2)

Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).

G. E. Fernandes, Y. L. Pan, R. K. Chang, K. Aptowicz, and R. G. Pinnick, “Simultaneous forward- and backward-hemisphere elastic-light-scattering patterns of respirable-size aerosols,” Opt. Lett. 31, 3034–3036 (2006).
[CrossRef]

2002 (1)

S. Takayama, A. Tanaka, T. Sugawara, and T. Himuro, “Effects of oxygen gas annealing on electrical properties and internal stress in indium tin oxide films,” Jpn. J. Appl. Phys. 41, L619–L621 (2002).

2001 (2)

N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films,” J. Vac. Sci. Technol. A 19, 1636–1641(2001).
[CrossRef]

S. K. Choi and J. I. Lee, “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering,” J. Vac. Sci. Technol. A 19, 2043–2047 (2001).
[CrossRef]

1997 (1)

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

Aptowicz, K.

Belkin, V. S.

E. V. Shun’ko and V. S. Belkin, “Cleaning properties of atomic oxygen excited to metastable state 2s22p4(S01),” J. Appl. Phys. 102, 083304 (2007).
[CrossRef]

E. V. Shun’ko and V. S. Belkin, “Cleaning and improving adhesion of surfaces by their treatment with afterglow products of DBD in N2,” in Seventh International Symposium on Polymer Surface Modification, K. L. Mittal and R. H. Lacombe, eds. (University of Maine, 2009), pp. 11–17. http://www.mstconf.com/UMainePresentations2009/ShunkoCleaningImprovingAdhesionN2.pdf .

Chang, R. K.

Cheyssac, P.

V. Sterligov and P. Cheyssac, “Apparatus and method for optical object characterization,” French patent no. 0115232, deposited by the CNRS on 23 November 2001.

Choi, S. K.

S. K. Choi and J. I. Lee, “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering,” J. Vac. Sci. Technol. A 19, 2043–2047 (2001).
[CrossRef]

Fernandes, G. E.

Himuro, T.

S. Takayama, A. Tanaka, T. Sugawara, and T. Himuro, “Effects of oxygen gas annealing on electrical properties and internal stress in indium tin oxide films,” Jpn. J. Appl. Phys. 41, L619–L621 (2002).

Kahn, A.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

Kikuchi, N.

N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films,” J. Vac. Sci. Technol. A 19, 1636–1641(2001).
[CrossRef]

Kinbara, A.

N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films,” J. Vac. Sci. Technol. A 19, 1636–1641(2001).
[CrossRef]

Kishio, E.

N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films,” J. Vac. Sci. Technol. A 19, 1636–1641(2001).
[CrossRef]

Kusano, E.

N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films,” J. Vac. Sci. Technol. A 19, 1636–1641(2001).
[CrossRef]

Lee, J. I.

S. K. Choi and J. I. Lee, “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering,” J. Vac. Sci. Technol. A 19, 2043–2047 (2001).
[CrossRef]

Nader, S.

S. Nader, “Comment on Cleaning properties of atomic oxygen excited to metastable state 2s2p4s(S10),’” J. Appl. Phys. 103, 106105 (2008).
[CrossRef]

Nanto, H.

N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films,” J. Vac. Sci. Technol. A 19, 1636–1641(2001).
[CrossRef]

Navrátil, Z.

Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).

Pan, Y. L.

Pinnick, R. G.

Šerý, M.

Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).

Shun’ko, E. V.

E. V. Shun’ko and V. S. Belkin, “Cleaning properties of atomic oxygen excited to metastable state 2s22p4(S01),” J. Appl. Phys. 102, 083304 (2007).
[CrossRef]

E. V. Shun’ko and V. S. Belkin, “Cleaning and improving adhesion of surfaces by their treatment with afterglow products of DBD in N2,” in Seventh International Symposium on Polymer Surface Modification, K. L. Mittal and R. H. Lacombe, eds. (University of Maine, 2009), pp. 11–17. http://www.mstconf.com/UMainePresentations2009/ShunkoCleaningImprovingAdhesionN2.pdf .

Slavícek, P.

Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).

Špatenka, P.

Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).

St’hel, P.

Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).

Sterligov, V.

V. Sterligov and P. Cheyssac, “Apparatus and method for optical object characterization,” French patent no. 0115232, deposited by the CNRS on 23 November 2001.

Stover, J. C.

J. C. Stover, “Optical Scattering: Measurements and Analysis,” 2nd ed. (SPIE, 1995).

Stranák, V.

Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).

Sturm, J. C.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

Sugawara, T.

S. Takayama, A. Tanaka, T. Sugawara, and T. Himuro, “Effects of oxygen gas annealing on electrical properties and internal stress in indium tin oxide films,” Jpn. J. Appl. Phys. 41, L619–L621 (2002).

Takayama, S.

S. Takayama, A. Tanaka, T. Sugawara, and T. Himuro, “Effects of oxygen gas annealing on electrical properties and internal stress in indium tin oxide films,” Jpn. J. Appl. Phys. 41, L619–L621 (2002).

Tanaka, A.

S. Takayama, A. Tanaka, T. Sugawara, and T. Himuro, “Effects of oxygen gas annealing on electrical properties and internal stress in indium tin oxide films,” Jpn. J. Appl. Phys. 41, L619–L621 (2002).

Tichý, M.

Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).

Trunec, D.

Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).

Wu, C. C.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

Wu, C. I.

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

AIP Conf. Proc. (1)

Z. Navrátil, P. Slavíĉek, V. Straňák, M. Šerý, M. Tichý, D. Trunec, P. Špatenka, and P. St’hel, “Optical emission spectroscopy of surfatron generated plasma in Ar+O2 and N2+O2 mixtures,” in AIP Conf. Proc.   812, 72–79 (2006).

Appl. Phys. Lett. (1)

C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70, 1348–1350 (1997).
[CrossRef]

J. Appl. Phys. (2)

E. V. Shun’ko and V. S. Belkin, “Cleaning properties of atomic oxygen excited to metastable state 2s22p4(S01),” J. Appl. Phys. 102, 083304 (2007).
[CrossRef]

S. Nader, “Comment on Cleaning properties of atomic oxygen excited to metastable state 2s2p4s(S10),’” J. Appl. Phys. 103, 106105 (2008).
[CrossRef]

J. Vac. Sci. Technol. A (2)

N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films,” J. Vac. Sci. Technol. A 19, 1636–1641(2001).
[CrossRef]

S. K. Choi and J. I. Lee, “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering,” J. Vac. Sci. Technol. A 19, 2043–2047 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Takayama, A. Tanaka, T. Sugawara, and T. Himuro, “Effects of oxygen gas annealing on electrical properties and internal stress in indium tin oxide films,” Jpn. J. Appl. Phys. 41, L619–L621 (2002).

Opt. Lett. (1)

Other (3)

J. C. Stover, “Optical Scattering: Measurements and Analysis,” 2nd ed. (SPIE, 1995).

V. Sterligov and P. Cheyssac, “Apparatus and method for optical object characterization,” French patent no. 0115232, deposited by the CNRS on 23 November 2001.

E. V. Shun’ko and V. S. Belkin, “Cleaning and improving adhesion of surfaces by their treatment with afterglow products of DBD in N2,” in Seventh International Symposium on Polymer Surface Modification, K. L. Mittal and R. H. Lacombe, eds. (University of Maine, 2009), pp. 11–17. http://www.mstconf.com/UMainePresentations2009/ShunkoCleaningImprovingAdhesionN2.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Sketch of the experimental setup with partial inset of its photograph: 1—jet of Ar gas mixed with excited oxygen; 2—controllable electric heater; 3—thermocouple.

Fig. 2.
Fig. 2.

Schematic of elastic light scattering measurements: He–Ne, He–Ne laser; Ch, fork chopper; L1, focusing lens; M, elliptic mirror; S, substrate with ITO film; BS, beam splitter; PhD, photodetector; L2, conjunction lens; CCD, CCD camera.

Fig. 3.
Fig. 3.

Transmittance T of ITO film (thickness δ=300nm) versus wavelength λ: 1 (2), curve corresponding to untreated (treated) film.

Fig. 4.
Fig. 4.

Comparison of experimental spectra emitted by excited atomic oxygen in transition O(S10)O(D12)[2], dashed gray line, with NO2 yellow-green continuum [3], black line.

Fig. 5.
Fig. 5.

Angular dependence of intensity of XRD on ITO film before (gray trace) and after (black trace) treatment.

Fig. 6.
Fig. 6.

Logarithm of normalized spatial distribution of scattered light (logARS(θ,φ)) for (a) treated zone of substrate (averaged over 9 points); (b) untreated zone of substrate (averaged over 10 points); (c) difference between normalized average spatial distributions of scattered light of treated and untreated zones (linear scale).

Fig. 7.
Fig. 7.

Azimuthal distributions of scattered light intensities (ARS) averaged over the 35°θ40° range: 1, treated zone; 2, untreated zone; 3, difference between the treated and untreated zones. A dip in the vicinity of 300° is owed to the shadow of the substrate holder.

Fig. 8.
Fig. 8.

Normalized intensity of scattered light, ARS, averaged over the 35°φ40° range versus spatial frequency f: 1, treated zone; 2, untreated zone; 3, difference between the intensities of treated and untreated zones.

Fig. 9.
Fig. 9.

Histograms of rms surface roughness for treated zone (black bars) and untreated zone (gray bars). Inset is a map of measurement points on the substrate. Treated area was inside of the inner circle and untreated area was outside of the outer circle. The area between the inner and outer circles was treated partially.

Fig. 10.
Fig. 10.

Surface profile of treated zone measured by AFM. Inset corresponds to histogram of AFM heights distribution.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ARS(θ,φ)=I(θ,φ)I0dΩ
TIS=TSLII0R
σ=λ4πTIS
f=sinθk·λ

Metrics