Abstract

A hybrid imaging system was developed to enable the application of laser-based measurement techniques like UV laser-induced fluorescence in near-production engines with small access ports. For this task, wide-angle characteristics and high lens speed are required in combination with small engine-bound optics able to survive in harsh environmental conditions. Our approach combines a simple and robust access lens with refractive/diffractive (hybrid) imaging stages away from the engine that are customized for individual wavelength bands. We give a detailed insight into the design strategy, including the integration of diffractive optics and the performance of the system with analysis of the modulation transfer function (MTF), lens speed, and stray light. Finally, results from applications in an actual engine are shown.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
    [CrossRef]
  2. Y. Yoon, “Design and tolerancing of achromatic and anastigmatic diffractive-refractive lens systems compared with equivalent conventional lens systems,” Appl. Opt. 39, 2551–2558 (2000).
    [CrossRef]
  3. D. A. Buralli and G. M. Morris, “Design of a wide field diffractive landscape lens,” Appl. Opt. 28, 3950–3959 (1989).
    [CrossRef]
  4. D. A. Buralli and G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151 (1991).
    [CrossRef]
  5. D. A. Buralli and G. M. Morris, “Design of two- and three-element diffractive Keplerian telescopes,” Appl. Opt. 31, 38–43 (1992).
    [CrossRef]
  6. M. V. R. K. Murty, “Spherical zone-plate diffraction grating,” J. Opt. Soc. Am. 50, 923 (1960).
    [CrossRef]
  7. W. A. Kleinhans, “Aberrations of curved zone plates and Fresnel lenses,” Appl. Opt. 16, 1701–1704 (1977).
    [CrossRef]
  8. N. Bokor and N. Davidson, “Aberration-free imaging with an aplanatic curved diffractive element,” Appl. Opt. 40, 5825–5829 (2001).
    [CrossRef]
  9. M. Häfner, R. Reichle, C. Pruss, and W. Osten, “A direct laser writing system for the fabrication of diffractive structures on curved substrates,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2452.
  10. R. Reichle, M. Häfner, C. Pruß, and W. Osten, “Diffraktive Strukturen auf gekrümmten Oberflächen für hybride Abbildungssysteme (Diffractive structures on curved surfaces for hybrid imaging systems),” Photonik 4, 36–40(2010).
  11. J. C. Wyant and V. P. Bennett, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972).
    [CrossRef]
  12. D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992).
    [CrossRef]
  13. M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34, 2452 (1995).
    [CrossRef]
  14. W. Knapp, G. Blough, K. Khajurivala, R. Michaels, B. Tatian, and B. Volk, “Optical design comparison of 60 degrees eyepieces: one with a diffractive surface and one with aspherics,” Appl. Opt. 36, 4756–4760 (1997).
    [CrossRef]
  15. Z. Yun, Y. Lam, Y. Zhou, X. Yuan, L. Zhao, and J. Liu, “Eyepiece design with refractive-diffractive hybrid elements,” Proc. SPIE 4093, 474–480 (2000).
    [CrossRef]
  16. R. Brunner, “Diffractive-refractive hybrid microscope objective for 193-nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).
    [CrossRef]
  17. T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DMA2.
  18. M. Haefner, C. Pruss, and W. Osten, “Laser direct writing of rotationally symmetric high-resolution structures,” Appl. Opt. 50, 5983–5989 (2011).
    [CrossRef]
  19. C. Pruss, R. Reichle, and W. Osten, “Realistic modeling of diffractive optical elements,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2444.
  20. R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, F. Zimmermann, and C. Schulz, “Hybrid excitation and imaging optics for minimal invasive multiple-band UV-LIF-measurements in engines,” in VDI-Berichte (VDI Verlag GmbH, 2006), Vol. 1959, pp. 223–235.
  21. J. Wolfrum, T. Dreier, V. Ebert, and C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2118–2148.
  22. M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99–124 (2007).
    [CrossRef]
  23. C. Espey and J. E. Dec, “Diesel engine combustion studies in a newly designed optical access engine using high-speed visualization and 2-D laser imaging,” SAE Technical Paper Series 930971 (1993).
  24. Product-Manual UV Camera Endoscope Item No. 1108450 (La Vision GmbH, 2003).
  25. M. Richter, B. Axelsson, and M. Aldén, “Engine diagnostics using laser induced fluorescence signals collected through an endoscopic detection system,” SAE Technical Paper Series 982465 (1998).
  26. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Proc. Combust. Inst. 31, 75–121 (2005).
  27. W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
    [CrossRef]
  28. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
    [CrossRef]
  29. D. Frieden, V. Sick, J. Gronki, and C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 75, 137–141 (2002).
    [CrossRef]
  30. M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
    [CrossRef]
  31. R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “Fiber optic spark plug sensor for UV-LIF measurements close to the ignition spark,” Proc. SPIE 5856, 158–168 (2005).
    [CrossRef]
  32. T. H. Tomkinson, J. L. Bentley, M. K. Crawford, C. J. Harkrider, D. T. Moore, and J. L. Rouke, “Rigid endoscopic relay systems: a comparative study,” Appl. Opt. 35, 6674 (1996).
    [CrossRef]
  33. M. J. Kidger, Fundamental Optical Design (SPIE, 2002).
  34. C. Pruss, “Performance improvement of CGHs for optical testing,” Proc. SPIE 5144, 460–471 (2003).
    [CrossRef]
  35. V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45, 53–62 (2006).
    [CrossRef]
  36. G. D. Boreman and S. Yang, “Modulation transfer function measurement using three- and four-bar targets,” Appl. Opt. 34, 8050–8052 (1995).
    [CrossRef]
  37. R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in Online Proceedings DGaO (DGaO, 2006).
  38. C. Gessenhardt, F. Zimmermann, C. Schulz, R. Reichle, C. Pruss, and W. Osten, “Hybrid endoscopes for laser-based imaging diagnostics in IC engines,” SAE Technical Paper Series 2009–01–0655 (2009).

2011 (1)

2010 (1)

R. Reichle, M. Häfner, C. Pruß, and W. Osten, “Diffraktive Strukturen auf gekrümmten Oberflächen für hybride Abbildungssysteme (Diffractive structures on curved surfaces for hybrid imaging systems),” Photonik 4, 36–40(2010).

2009 (1)

C. Gessenhardt, F. Zimmermann, C. Schulz, R. Reichle, C. Pruss, and W. Osten, “Hybrid endoscopes for laser-based imaging diagnostics in IC engines,” SAE Technical Paper Series 2009–01–0655 (2009).

2008 (1)

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

2007 (1)

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99–124 (2007).
[CrossRef]

2006 (1)

2005 (3)

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “Fiber optic spark plug sensor for UV-LIF measurements close to the ignition spark,” Proc. SPIE 5856, 158–168 (2005).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Proc. Combust. Inst. 31, 75–121 (2005).

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

2004 (1)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

2003 (2)

R. Brunner, “Diffractive-refractive hybrid microscope objective for 193-nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).
[CrossRef]

C. Pruss, “Performance improvement of CGHs for optical testing,” Proc. SPIE 5144, 460–471 (2003).
[CrossRef]

2002 (1)

D. Frieden, V. Sick, J. Gronki, and C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 75, 137–141 (2002).
[CrossRef]

2001 (1)

2000 (2)

Y. Yoon, “Design and tolerancing of achromatic and anastigmatic diffractive-refractive lens systems compared with equivalent conventional lens systems,” Appl. Opt. 39, 2551–2558 (2000).
[CrossRef]

Z. Yun, Y. Lam, Y. Zhou, X. Yuan, L. Zhao, and J. Liu, “Eyepiece design with refractive-diffractive hybrid elements,” Proc. SPIE 4093, 474–480 (2000).
[CrossRef]

1998 (1)

M. Richter, B. Axelsson, and M. Aldén, “Engine diagnostics using laser induced fluorescence signals collected through an endoscopic detection system,” SAE Technical Paper Series 982465 (1998).

1997 (1)

1996 (1)

1995 (2)

1993 (1)

C. Espey and J. E. Dec, “Diesel engine combustion studies in a newly designed optical access engine using high-speed visualization and 2-D laser imaging,” SAE Technical Paper Series 930971 (1993).

1992 (2)

1991 (1)

1989 (1)

1988 (1)

1977 (1)

1972 (1)

1960 (1)

Aldén, M.

M. Richter, B. Axelsson, and M. Aldén, “Engine diagnostics using laser induced fluorescence signals collected through an endoscopic detection system,” SAE Technical Paper Series 982465 (1998).

Axelsson, B.

M. Richter, B. Axelsson, and M. Aldén, “Engine diagnostics using laser induced fluorescence signals collected through an endoscopic detection system,” SAE Technical Paper Series 982465 (1998).

Bennett, V. P.

Bentley, J. L.

Blough, G.

Bokor, N.

Boreman, G. D.

Brunner, R.

R. Brunner, “Diffractive-refractive hybrid microscope objective for 193-nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).
[CrossRef]

Buralli, D. A.

Crawford, M. K.

Davidson, N.

Dec, J. E.

C. Espey and J. E. Dec, “Diesel engine combustion studies in a newly designed optical access engine using high-speed visualization and 2-D laser imaging,” SAE Technical Paper Series 930971 (1993).

Drake, M. C.

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99–124 (2007).
[CrossRef]

Dreier, T.

J. Wolfrum, T. Dreier, V. Ebert, and C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2118–2148.

Ebert, V.

J. Wolfrum, T. Dreier, V. Ebert, and C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2118–2148.

Espey, C.

C. Espey and J. E. Dec, “Diesel engine combustion studies in a newly designed optical access engine using high-speed visualization and 2-D laser imaging,” SAE Technical Paper Series 930971 (1993).

Frieden, D.

D. Frieden, V. Sick, J. Gronki, and C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 75, 137–141 (2002).
[CrossRef]

George, N.

Gessenhardt, C.

C. Gessenhardt, F. Zimmermann, C. Schulz, R. Reichle, C. Pruss, and W. Osten, “Hybrid endoscopes for laser-based imaging diagnostics in IC engines,” SAE Technical Paper Series 2009–01–0655 (2009).

Gronki, J.

D. Frieden, V. Sick, J. Gronki, and C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 75, 137–141 (2002).
[CrossRef]

Haefner, M.

Häfner, M.

R. Reichle, M. Häfner, C. Pruß, and W. Osten, “Diffraktive Strukturen auf gekrümmten Oberflächen für hybride Abbildungssysteme (Diffractive structures on curved surfaces for hybrid imaging systems),” Photonik 4, 36–40(2010).

M. Häfner, R. Reichle, C. Pruss, and W. Osten, “A direct laser writing system for the fabrication of diffractive structures on curved substrates,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2452.

Hanson, R. K.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Harkrider, C. J.

Haworth, D. C.

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99–124 (2007).
[CrossRef]

Khajurivala, K.

Kidger, M. J.

M. J. Kidger, Fundamental Optical Design (SPIE, 2002).

Kleinhans, W. A.

Knapp, W.

Koban, W.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Koch, J. D.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Korolkov, V. P.

Lam, Y.

Z. Yun, Y. Lam, Y. Zhou, X. Yuan, L. Zhao, and J. Liu, “Eyepiece design with refractive-diffractive hybrid elements,” Proc. SPIE 4093, 474–480 (2000).
[CrossRef]

Liu, J.

Z. Yun, Y. Lam, Y. Zhou, X. Yuan, L. Zhao, and J. Liu, “Eyepiece design with refractive-diffractive hybrid elements,” Proc. SPIE 4093, 474–480 (2000).
[CrossRef]

Luong, M.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

Michaels, R.

Missig, M. D.

Moore, D. T.

Morris, G. M.

Murty, M. V. R. K.

Nakai, T.

T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DMA2.

Nasyrov, R. K.

Ogawa, H.

T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DMA2.

Osten, W.

M. Haefner, C. Pruss, and W. Osten, “Laser direct writing of rotationally symmetric high-resolution structures,” Appl. Opt. 50, 5983–5989 (2011).
[CrossRef]

R. Reichle, M. Häfner, C. Pruß, and W. Osten, “Diffraktive Strukturen auf gekrümmten Oberflächen für hybride Abbildungssysteme (Diffractive structures on curved surfaces for hybrid imaging systems),” Photonik 4, 36–40(2010).

C. Gessenhardt, F. Zimmermann, C. Schulz, R. Reichle, C. Pruss, and W. Osten, “Hybrid endoscopes for laser-based imaging diagnostics in IC engines,” SAE Technical Paper Series 2009–01–0655 (2009).

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “Fiber optic spark plug sensor for UV-LIF measurements close to the ignition spark,” Proc. SPIE 5856, 158–168 (2005).
[CrossRef]

M. Häfner, R. Reichle, C. Pruss, and W. Osten, “A direct laser writing system for the fabrication of diffractive structures on curved substrates,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2452.

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in Online Proceedings DGaO (DGaO, 2006).

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, F. Zimmermann, and C. Schulz, “Hybrid excitation and imaging optics for minimal invasive multiple-band UV-LIF-measurements in engines,” in VDI-Berichte (VDI Verlag GmbH, 2006), Vol. 1959, pp. 223–235.

C. Pruss, R. Reichle, and W. Osten, “Realistic modeling of diffractive optical elements,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2444.

Pruss, C.

Pruß, C.

R. Reichle, M. Häfner, C. Pruß, and W. Osten, “Diffraktive Strukturen auf gekrümmten Oberflächen für hybride Abbildungssysteme (Diffractive structures on curved surfaces for hybrid imaging systems),” Photonik 4, 36–40(2010).

Pruss, C.

C. Gessenhardt, F. Zimmermann, C. Schulz, R. Reichle, C. Pruss, and W. Osten, “Hybrid endoscopes for laser-based imaging diagnostics in IC engines,” SAE Technical Paper Series 2009–01–0655 (2009).

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “Fiber optic spark plug sensor for UV-LIF measurements close to the ignition spark,” Proc. SPIE 5856, 158–168 (2005).
[CrossRef]

C. Pruss, “Performance improvement of CGHs for optical testing,” Proc. SPIE 5144, 460–471 (2003).
[CrossRef]

M. Häfner, R. Reichle, C. Pruss, and W. Osten, “A direct laser writing system for the fabrication of diffractive structures on curved substrates,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2452.

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, F. Zimmermann, and C. Schulz, “Hybrid excitation and imaging optics for minimal invasive multiple-band UV-LIF-measurements in engines,” in VDI-Berichte (VDI Verlag GmbH, 2006), Vol. 1959, pp. 223–235.

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in Online Proceedings DGaO (DGaO, 2006).

C. Pruss, R. Reichle, and W. Osten, “Realistic modeling of diffractive optical elements,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2444.

Reichle, R.

R. Reichle, M. Häfner, C. Pruß, and W. Osten, “Diffraktive Strukturen auf gekrümmten Oberflächen für hybride Abbildungssysteme (Diffractive structures on curved surfaces for hybrid imaging systems),” Photonik 4, 36–40(2010).

C. Gessenhardt, F. Zimmermann, C. Schulz, R. Reichle, C. Pruss, and W. Osten, “Hybrid endoscopes for laser-based imaging diagnostics in IC engines,” SAE Technical Paper Series 2009–01–0655 (2009).

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “Fiber optic spark plug sensor for UV-LIF measurements close to the ignition spark,” Proc. SPIE 5856, 158–168 (2005).
[CrossRef]

C. Pruss, R. Reichle, and W. Osten, “Realistic modeling of diffractive optical elements,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2444.

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in Online Proceedings DGaO (DGaO, 2006).

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, F. Zimmermann, and C. Schulz, “Hybrid excitation and imaging optics for minimal invasive multiple-band UV-LIF-measurements in engines,” in VDI-Berichte (VDI Verlag GmbH, 2006), Vol. 1959, pp. 223–235.

M. Häfner, R. Reichle, C. Pruss, and W. Osten, “A direct laser writing system for the fabrication of diffractive structures on curved substrates,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2452.

Richter, M.

M. Richter, B. Axelsson, and M. Aldén, “Engine diagnostics using laser induced fluorescence signals collected through an endoscopic detection system,” SAE Technical Paper Series 982465 (1998).

Rouke, J. L.

Schulz, C.

C. Gessenhardt, F. Zimmermann, C. Schulz, R. Reichle, C. Pruss, and W. Osten, “Hybrid endoscopes for laser-based imaging diagnostics in IC engines,” SAE Technical Paper Series 2009–01–0655 (2009).

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Proc. Combust. Inst. 31, 75–121 (2005).

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “Fiber optic spark plug sensor for UV-LIF measurements close to the ignition spark,” Proc. SPIE 5856, 158–168 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

D. Frieden, V. Sick, J. Gronki, and C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 75, 137–141 (2002).
[CrossRef]

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in Online Proceedings DGaO (DGaO, 2006).

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, F. Zimmermann, and C. Schulz, “Hybrid excitation and imaging optics for minimal invasive multiple-band UV-LIF-measurements in engines,” in VDI-Berichte (VDI Verlag GmbH, 2006), Vol. 1959, pp. 223–235.

J. Wolfrum, T. Dreier, V. Ebert, and C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2118–2148.

Shimansky, R. V.

Sick, V.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Proc. Combust. Inst. 31, 75–121 (2005).

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

D. Frieden, V. Sick, J. Gronki, and C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 75, 137–141 (2002).
[CrossRef]

Stone, T.

Tatian, B.

Tiziani, H.

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “Fiber optic spark plug sensor for UV-LIF measurements close to the ignition spark,” Proc. SPIE 5856, 158–168 (2005).
[CrossRef]

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in Online Proceedings DGaO (DGaO, 2006).

Tiziani, H. J.

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, F. Zimmermann, and C. Schulz, “Hybrid excitation and imaging optics for minimal invasive multiple-band UV-LIF-measurements in engines,” in VDI-Berichte (VDI Verlag GmbH, 2006), Vol. 1959, pp. 223–235.

Tomkinson, T. H.

Volk, B.

Wermuth, N.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

Wolfrum, J.

J. Wolfrum, T. Dreier, V. Ebert, and C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2118–2148.

Wyant, J. C.

Yang, S.

Yoon, Y.

Yuan, X.

Z. Yun, Y. Lam, Y. Zhou, X. Yuan, L. Zhao, and J. Liu, “Eyepiece design with refractive-diffractive hybrid elements,” Proc. SPIE 4093, 474–480 (2000).
[CrossRef]

Yun, Z.

Z. Yun, Y. Lam, Y. Zhou, X. Yuan, L. Zhao, and J. Liu, “Eyepiece design with refractive-diffractive hybrid elements,” Proc. SPIE 4093, 474–480 (2000).
[CrossRef]

Zhang, R.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

Zhao, L.

Z. Yun, Y. Lam, Y. Zhou, X. Yuan, L. Zhao, and J. Liu, “Eyepiece design with refractive-diffractive hybrid elements,” Proc. SPIE 4093, 474–480 (2000).
[CrossRef]

Zhou, Y.

Z. Yun, Y. Lam, Y. Zhou, X. Yuan, L. Zhao, and J. Liu, “Eyepiece design with refractive-diffractive hybrid elements,” Proc. SPIE 4093, 474–480 (2000).
[CrossRef]

Zimmermann, F.

C. Gessenhardt, F. Zimmermann, C. Schulz, R. Reichle, C. Pruss, and W. Osten, “Hybrid endoscopes for laser-based imaging diagnostics in IC engines,” SAE Technical Paper Series 2009–01–0655 (2009).

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “Fiber optic spark plug sensor for UV-LIF measurements close to the ignition spark,” Proc. SPIE 5856, 158–168 (2005).
[CrossRef]

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, F. Zimmermann, and C. Schulz, “Hybrid excitation and imaging optics for minimal invasive multiple-band UV-LIF-measurements in engines,” in VDI-Berichte (VDI Verlag GmbH, 2006), Vol. 1959, pp. 223–235.

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in Online Proceedings DGaO (DGaO, 2006).

Appl. Opt. (15)

J. C. Wyant and V. P. Bennett, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972).
[CrossRef]

W. A. Kleinhans, “Aberrations of curved zone plates and Fresnel lenses,” Appl. Opt. 16, 1701–1704 (1977).
[CrossRef]

T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
[CrossRef]

D. A. Buralli and G. M. Morris, “Design of a wide field diffractive landscape lens,” Appl. Opt. 28, 3950–3959 (1989).
[CrossRef]

D. A. Buralli and G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151 (1991).
[CrossRef]

D. A. Buralli and G. M. Morris, “Design of two- and three-element diffractive Keplerian telescopes,” Appl. Opt. 31, 38–43 (1992).
[CrossRef]

D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992).
[CrossRef]

W. Knapp, G. Blough, K. Khajurivala, R. Michaels, B. Tatian, and B. Volk, “Optical design comparison of 60 degrees eyepieces: one with a diffractive surface and one with aspherics,” Appl. Opt. 36, 4756–4760 (1997).
[CrossRef]

M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34, 2452 (1995).
[CrossRef]

G. D. Boreman and S. Yang, “Modulation transfer function measurement using three- and four-bar targets,” Appl. Opt. 34, 8050–8052 (1995).
[CrossRef]

T. H. Tomkinson, J. L. Bentley, M. K. Crawford, C. J. Harkrider, D. T. Moore, and J. L. Rouke, “Rigid endoscopic relay systems: a comparative study,” Appl. Opt. 35, 6674 (1996).
[CrossRef]

Y. Yoon, “Design and tolerancing of achromatic and anastigmatic diffractive-refractive lens systems compared with equivalent conventional lens systems,” Appl. Opt. 39, 2551–2558 (2000).
[CrossRef]

N. Bokor and N. Davidson, “Aberration-free imaging with an aplanatic curved diffractive element,” Appl. Opt. 40, 5825–5829 (2001).
[CrossRef]

V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45, 53–62 (2006).
[CrossRef]

M. Haefner, C. Pruss, and W. Osten, “Laser direct writing of rotationally symmetric high-resolution structures,” Appl. Opt. 50, 5983–5989 (2011).
[CrossRef]

Appl. Phys. B (2)

D. Frieden, V. Sick, J. Gronki, and C. Schulz, “Quantitative oxygen imaging in an engine,” Appl. Phys. B 75, 137–141 (2002).
[CrossRef]

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669–675 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

Photonik (1)

R. Reichle, M. Häfner, C. Pruß, and W. Osten, “Diffraktive Strukturen auf gekrümmten Oberflächen für hybride Abbildungssysteme (Diffractive structures on curved surfaces for hybrid imaging systems),” Photonik 4, 36–40(2010).

Phys. Chem. Chem. Phys. (1)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[CrossRef]

Proc. Combust. Inst. (3)

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99–124 (2007).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Proc. Combust. Inst. 31, 75–121 (2005).

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

Proc. SPIE (4)

C. Pruss, “Performance improvement of CGHs for optical testing,” Proc. SPIE 5144, 460–471 (2003).
[CrossRef]

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “Fiber optic spark plug sensor for UV-LIF measurements close to the ignition spark,” Proc. SPIE 5856, 158–168 (2005).
[CrossRef]

Z. Yun, Y. Lam, Y. Zhou, X. Yuan, L. Zhao, and J. Liu, “Eyepiece design with refractive-diffractive hybrid elements,” Proc. SPIE 4093, 474–480 (2000).
[CrossRef]

R. Brunner, “Diffractive-refractive hybrid microscope objective for 193-nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).
[CrossRef]

SAE Technical Paper Series (3)

C. Espey and J. E. Dec, “Diesel engine combustion studies in a newly designed optical access engine using high-speed visualization and 2-D laser imaging,” SAE Technical Paper Series 930971 (1993).

M. Richter, B. Axelsson, and M. Aldén, “Engine diagnostics using laser induced fluorescence signals collected through an endoscopic detection system,” SAE Technical Paper Series 982465 (1998).

C. Gessenhardt, F. Zimmermann, C. Schulz, R. Reichle, C. Pruss, and W. Osten, “Hybrid endoscopes for laser-based imaging diagnostics in IC engines,” SAE Technical Paper Series 2009–01–0655 (2009).

Other (8)

M. Häfner, R. Reichle, C. Pruss, and W. Osten, “A direct laser writing system for the fabrication of diffractive structures on curved substrates,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2452.

Product-Manual UV Camera Endoscope Item No. 1108450 (La Vision GmbH, 2003).

T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DMA2.

C. Pruss, R. Reichle, and W. Osten, “Realistic modeling of diffractive optical elements,” in EOS Topical Meeting on Diffractive Optics (2010), p. 2444.

R. Reichle, C. Pruss, W. Osten, H. J. Tiziani, F. Zimmermann, and C. Schulz, “Hybrid excitation and imaging optics for minimal invasive multiple-band UV-LIF-measurements in engines,” in VDI-Berichte (VDI Verlag GmbH, 2006), Vol. 1959, pp. 223–235.

J. Wolfrum, T. Dreier, V. Ebert, and C. Schulz, “Laser-based combustion diagnostics,” in Encyclopedia of Analytical Chemistry (Wiley, 2000), pp. 2118–2148.

M. J. Kidger, Fundamental Optical Design (SPIE, 2002).

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in Online Proceedings DGaO (DGaO, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1.
Fig. 1.

Fluorescence spectra of toluene and 3-pentanone upon excitation at 266 nm (vertical red line) [26].

Fig. 2.
Fig. 2.

Schematic overview of basic geometry and requirements for minimally invasive detection optics for UV-LIF imaging in a near-production internal combustion engine.

Fig. 3.
Fig. 3.

Optical design concept and illustration of the corresponding distribution of chromatic aberrations. The arrows in the table indicate the sign and the qualitative magnitude of the chromatic aberrations of each imaging stage. In the real system, the exact situation will depend on various parameters.

Fig. 4.
Fig. 4.

Setup for the simultaneous endoscopic measurement of two broadband UV-LIF signals from different tracers.

Fig. 5.
Fig. 5.

Seidel aberration coefficients for the design of the access optics calculated with Zemax for a maximum field position of 15 mm.

Fig. 6.
Fig. 6.

Result of a nonsequential stray-light simulation of the hybrid imaging system at 335 nm including the effects of unwanted diffraction orders based on a scalar model. The simulated detector has 500×500 pixels.

Fig. 7.
Fig. 7.

Comparison of the on-axis ray fans for different relay optics with different refractive and diffractive lens type combinations upon optimization. PX are the normalized pupil coordinates; the transverse aberration scales EX are identical on all images. (a) Refractive asphere without diffractive correction. (b) Refractive sphere and quadratic-phase diffractive correction. (c) Refractive asphere and quadratic-phase diffractive correction. (d) Refractive sphere and diffractive aspheric phase element with higher terms for compromise between chromatic and monochromatic aberration correction.

Fig. 8.
Fig. 8.

Chromatic correction of the hybrid imaging system with the relay optimized for 275–350 nm, demonstrated by the turnaround of the focal position for the central object point with the wavelength (a) and by the change of the RMS wavefront error with two minima within the correction range (b) also for the central object point.

Fig. 9.
Fig. 9.

Drawing and photographs of the access optics with its three fused silica lenses in a metal housing.

Fig. 10.
Fig. 10.

Diffractive optical element (DOE) fabricated at ITO: (a) Profile measurement with atomic force microscopy (AFM) close to the edge of the element, (b) photo in visible light showing several diffraction orders, and (c) integration into the relay.

Fig. 11.
Fig. 11.

Optical bench for the characterization of the hybrid imaging optics [20].

Fig. 12.
Fig. 12.

Test images taken with the hybrid imaging system with the relay for the channel 275–350 nm at different wavelengths. The images of each line are taken with the same focus position, which was set to focus the center of the image at 285 nm (a) and at 440 nm (b) to demonstrate the successful but specific chromatic correction. Each image is scaled to its maximum signal, and the individual spectral bandwidths were about 10 nm.

Fig. 13.
Fig. 13.

Polychromatic images of a quadratic target with 100 lines in 30×30mm2 (approximately 3 lines/mm) for (a) the 275–350 nm channel and (b) the 380–440 nm channel of the hybrid imaging system to demonstrate the polychromatic resolution. The polychromatic image of each channel was generated by addition of single images at different wavelengths for the same focus position: (a) 285, 313, and 335 nm; (b) 380, 400, 420, and 440 nm.

Fig. 14.
Fig. 14.

Results of the experimental analysis of the polychromatic image MTF of the hybrid imaging system for the combination of 285, 313, and 335 nm for different object field positions (0/0 and 15/0, all coordinates in mm) and orientations of (a) the centered system and (b) a decentered system with a shift of relay and camera of 0.7 toward the image of the object field point (0/15) and 0.5 mm in z to consider the effect of engine movements.

Fig. 15.
Fig. 15.

Comparison of field-dependent image intensities taken with the hybrid endoscope (left) and the UV-Nikkor lens (right) at 313 nm on setups with similar paraxial image magnification. The object target was a transparent square with 30×30mm2, including a dark area on one side to analyze image magnification. Background contributions were reduced in both images by setting the zero intensity level to the minimum intensity within the imaged target of 30×30mm2 including the border line. All levels below were set to zero.

Fig. 16.
Fig. 16.

Analysis of stray light of the hybrid imaging system on a real image of a target at 335 nm. The background within the field of view is about 1% of the peak intensity, and no ghost images are visible down to 0.1% of the peak intensity, which is in agreement with the simulation result of the hybrid imaging system with the same target (Fig. 6). The image resolution is 1024×1024 pixels.

Fig. 17.
Fig. 17.

Demonstration of the resolution of the hybrid imaging system in application examples: (a) LIF image of an injection spray of a toluene-containing model fuel. (b) Image of Mie scattering at 266 nm; this wavelength is slightly outside of the design specifications for this particular hybrid imaging system. Intensity levels above the maximum scale are also shown in the color white. The working distance was 35 mm, and the paraxial image magnification was 0.5.

Fig. 18.
Fig. 18.

Demonstration of the lens speed by comparison of averaged toluene-LIF images of two subsequent series of spray injections. (a) Endoscopic hybrid imaging system with preliminary diffractive optics; (b) conventional UV-Nikkor lens, both at the same absolute paraxial image magnification (0.5) and with the same filter (307±10nm). The images of are not corrected for distortion, so the spray targeting appears to differ slightly.

Fig. 19.
Fig. 19.

Minimally invasive access to the combustion chamber of the BMW production engine at the IVG.

Fig. 20.
Fig. 20.

Measurement geometry (a) and LIF-images of standard gasoline fuel mixing with air. (b) Eight consecutive cycles at the same crank angle [38].

Fig. 21.
Fig. 21.

Experiment (a) and resulting LIF signals of toluene (b) and 3-pentanone (c) in the first simultaneous, minimally invasive measurements in a near-production engine. The tracers were added to the model fuel isooctane in concentrations typical for experiments using macroscopic optics (toluene 1%, 3-pentanone 10%).

Metrics