Abstract

A hybrid imaging system was developed to enable the application of laser-based measurement techniques like UV laser-induced fluorescence in near-production engines with small access ports. For this task, wide-angle characteristics and high lens speed are required in combination with small engine-bound optics able to survive in harsh environmental conditions. Our approach combines a simple and robust access lens with refractive/diffractive (hybrid) imaging stages away from the engine that are customized for individual wavelength bands. We give a detailed insight into the design strategy, including the integration of diffractive optics and the performance of the system with analysis of the modulation transfer function (MTF), lens speed, and stray light. Finally, results from applications in an actual engine are shown.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (21)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription