Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Partially light-controlled imager based on liquid crystal plate and image intensifier for aurora and airglow measurement

Not Accessible

Your library or personal account may give you access

Abstract

In order to obtain information both of aurora and airglow in one image by the same detector, a PLCI based on liquid crystal plate LCP and super second-generation image intensifier SSGII is proposed in this research. The detection thresholds of the CCD for aurora and airglow are calculated. For the detectable illumination range of 104102lx, the corresponding electron count is 1.57×1050.2 for every pixel of CCD. The structure and work principle of the PLCI are described. An LC is introduced in the front of CCD to decrease the intensities of aurora in overexposure areas by means of controlling transmittances pixel by pixel, while an image intensifier is set between the LC and CCD to increase the intensity of the weak airglow. The modulation transfer function MTF of this system is calculated as 0.391 at a Nyquist frequency of 15lp/mm. The curve of transmittance with regard to gray level for the LC is obtained by calibration experiment. Based on the design principle, the prototype is made and used to take photos of objects under strong light greater than 2×105lx. The clear details of “西安理工大学XauT” presented in the image indicate that the PLCI can greatly improve the imaging quality. The theoretical calculations and experiment results prove that this device can extend the dynamic range and it provides a more effective method for upper atmospheric wind measurement.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Application of the intensified CCD to airglow and auroral measurements

A. L. Broadfoot and B. R. Sandel
Appl. Opt. 31(16) 3097-3108 (1992)

Partially light-controlled imaging system based on High Temperature Poly-Silicon Thin Film Transistor-Liquid Crystal Display

Yuanhe Tang, Ruixia Zhang, Haiyang Gao, Kai Liu, Gaoxiang Zhao, Xusan Yang, Qing Li, Yuan Liang, Na Ye, Hanchen Liu, and Shulin Liu
Opt. Express 18(10) 10616-10626 (2010)

Ground-based airglow imaging interferometer. Part 2: forward model and inverse method

Yuanhe Tang, Xiaodong Duan, Haiyang Gao, Ouyang Qu, Qijie Jia, Xiangang Cao, Shenni Wei, and Rui Yang
Appl. Opt. 53(11) 2273-2282 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved