Abstract

Based on the generalized stochastic nonlinear Schrödinger equation, the effect of intrapulse Raman scattering (IRS) on broadband amplitude noise of supercontinuum (SC) generated in the normal dispersion regime is investigated numerically. The results show that, in the normal dispersion regime, where the IRS contributes less to the bandwidth of the SC spectrum, the broadband amplitude noise of SC is amplified significantly in the process of SC generation because of the existence of IRS effect. Using fiber with an optimal negative dispersion slope, the IRS effect can be suppressed, and thus the SC amplitude noise is reduced without spectral bandwidth loss.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
    [CrossRef]
  2. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
    [CrossRef]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  4. H. Sotobayashi, W. Chujo, and T. Ozeki, “Wideband tunable wavelength conversion of 10−Gbit/s return-to-zero signals by optical time gating of a highly chirped rectangular supercontinuum light source,” Opt. Lett. 26, 1314–1316 (2001).
    [CrossRef]
  5. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum,” Electron. Lett. 30, 1166–1168 (1994).
    [CrossRef]
  6. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef]
  7. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
    [CrossRef]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  9. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003).
    [CrossRef]
  10. G. P. Agrawal, “Novel nonlinear phenomena,” in Nonlinear Fiber Optics, 4th ed. (Academic, 2006), pp. 469–477.
  11. G. P. Agrawal, “Pulse propagation in fibers,” in Nonlinear Fiber Optics, 4th ed. (Academic, 2006), pp. 25–46.
  12. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998).
    [CrossRef]
  13. F. Lu and W. H. Knox, “Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers,” Opt. Express 12, 347–353 (2004).
    [CrossRef]
  14. Y. Chen, W. Xu, H. Cui, W. Chen, and S. Liu, “The effect of fiber dispersion on generation of supercontinuum,” Acta Opt. Sin. 23, 297–301 (2003).
  15. S. Taccheo and K. Ennser, “Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses,” IEEE Photon. Technol. Lett. 14, 1100–1102 (2002).
    [CrossRef]
  16. J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
    [CrossRef]
  17. B. R. Washburn and N. R. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12, 2166–2175 (2004).
    [CrossRef]
  18. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
    [CrossRef]
  19. P. D. Drummond and J. F. Corney, “Quantum noise in optical fibers I: stochastic equations,” J. Opt. Soc. Am. B 18, 139–152 (2001).
    [CrossRef]
  20. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007).
    [CrossRef]
  21. L. Zheng, X. Zhang, X. Ren, H. Ma, L. Shi, Y. Wang, and Y. Huang, “Dispersion flattened photonic crystal fiber with high nonlinearity for supercontinuum generation at 1.55 µm,” Chin. Opt. Lett. 9, 040601 (2011).
  22. D. Schadt and B. Jaskorzynska, “Suppression of the Raman self-frequency shift by cross-phase modulation,” J. Opt. Soc. Am. B 5, 2374–2378 (1988).
    [CrossRef]
  23. A. S. Gouveia-Neto, A. S. Gomes, and J. R. Taylor, “Suppression and manipulation of the soliton self-frequency shift,” Opt. Lett. 14, 514–516 (1989).
    [CrossRef]
  24. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [CrossRef]
  25. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [CrossRef]
  26. P. K. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986).
    [CrossRef]

2011 (1)

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2004 (3)

2003 (7)

Y. Chen, W. Xu, H. Cui, W. Chen, and S. Liu, “The effect of fiber dispersion on generation of supercontinuum,” Acta Opt. Sin. 23, 297–301 (2003).

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef]

2002 (1)

S. Taccheo and K. Ennser, “Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses,” IEEE Photon. Technol. Lett. 14, 1100–1102 (2002).
[CrossRef]

2001 (3)

2000 (1)

1998 (1)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998).
[CrossRef]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef]

1994 (1)

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum,” Electron. Lett. 30, 1166–1168 (1994).
[CrossRef]

1989 (1)

1988 (1)

1986 (1)

Agrawal, G. P.

G. P. Agrawal, “Novel nonlinear phenomena,” in Nonlinear Fiber Optics, 4th ed. (Academic, 2006), pp. 469–477.

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef]

Ames, J. N.

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Bellini, M.

Chen, H. H.

Chen, W.

Y. Chen, W. Xu, H. Cui, W. Chen, and S. Liu, “The effect of fiber dispersion on generation of supercontinuum,” Acta Opt. Sin. 23, 297–301 (2003).

Chen, Y.

Y. Chen, W. Xu, H. Cui, W. Chen, and S. Liu, “The effect of fiber dispersion on generation of supercontinuum,” Acta Opt. Sin. 23, 297–301 (2003).

Chudoba, C.

Chujo, W.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Corney, J. F.

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef]

Cui, H.

Y. Chen, W. Xu, H. Cui, W. Chen, and S. Liu, “The effect of fiber dispersion on generation of supercontinuum,” Acta Opt. Sin. 23, 297–301 (2003).

Cundiff, S. T.

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Diddams, S. A.

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Drummond, P. D.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Ennser, K.

S. Taccheo and K. Ennser, “Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses,” IEEE Photon. Technol. Lett. 14, 1100–1102 (2002).
[CrossRef]

Fujimoto, J. G.

Gaeta, A. L.

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Ghanta, R. K.

Ghosh, S.

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

Gomes, A. S.

Gouveia-Neto, A. S.

Hänsch, T. W.

Hartl, I.

Huang, Y.

Hult, J.

Jaskorzynska, B.

Jørgensen, C. G.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef]

Kawanishi, S.

T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum,” Electron. Lett. 30, 1166–1168 (1994).
[CrossRef]

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef]

Knox, W. H.

Ko, T. H.

Kubota, H.

T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003).
[CrossRef]

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998).
[CrossRef]

Lee, Y. C.

Li, X. D.

Liu, S.

Y. Chen, W. Xu, H. Cui, W. Chen, and S. Liu, “The effect of fiber dispersion on generation of supercontinuum,” Acta Opt. Sin. 23, 297–301 (2003).

Lu, F.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef]

Ma, H.

Menyuk, C. R.

Mori, K.

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum,” Electron. Lett. 30, 1166–1168 (1994).
[CrossRef]

Morioka, T.

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum,” Electron. Lett. 30, 1166–1168 (1994).
[CrossRef]

Nakazawa, M.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998).
[CrossRef]

Newbury, N. R.

B. R. Washburn and N. R. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12, 2166–2175 (2004).
[CrossRef]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
[CrossRef]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Nicholson, J. W.

Ozeki, T.

Ranka, J. K.

Ren, X.

Russell, P. St. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef]

Saruwatari, M.

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum,” Electron. Lett. 30, 1166–1168 (1994).
[CrossRef]

Schadt, D.

Shi, L.

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef]

Sotobayashi, H.

Taccheo, S.

S. Taccheo and K. Ennser, “Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses,” IEEE Photon. Technol. Lett. 14, 1100–1102 (2002).
[CrossRef]

Tamura, K.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998).
[CrossRef]

Tanaka, M.

Taylor, J. R.

Wai, P. K.

Wang, Y.

Washburn, B R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Washburn, B. R.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

Xu, W.

Y. Chen, W. Xu, H. Cui, W. Chen, and S. Liu, “The effect of fiber dispersion on generation of supercontinuum,” Acta Opt. Sin. 23, 297–301 (2003).

Yamaguchi, S.

Yamamoto, T.

Yan, M F.

Yoshida, E.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998).
[CrossRef]

Zhang, X.

Zheng, L.

Acta Opt. Sin. (1)

Y. Chen, W. Xu, H. Cui, W. Chen, and S. Liu, “The effect of fiber dispersion on generation of supercontinuum,” Acta Opt. Sin. 23, 297–301 (2003).

Appl. Phys. B (2)

J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in a microstructured fiber,” Appl. Phys. B 77, 279–284 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[CrossRef]

Chin. Opt. Lett. (1)

Electron. Lett. (1)

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum,” Electron. Lett. 30, 1166–1168 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Taccheo and K. Ennser, “Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses,” IEEE Photon. Technol. Lett. 14, 1100–1102 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Fiber Technol. (1)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998).
[CrossRef]

Opt. Lett. (7)

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944–946 (2003).
[CrossRef]

M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
[CrossRef]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

H. Sotobayashi, W. Chujo, and T. Ozeki, “Wideband tunable wavelength conversion of 10−Gbit/s return-to-zero signals by optical time gating of a highly chirped rectangular supercontinuum light source,” Opt. Lett. 26, 1314–1316 (2001).
[CrossRef]

A. S. Gouveia-Neto, A. S. Gomes, and J. R. Taylor, “Suppression and manipulation of the soliton self-frequency shift,” Opt. Lett. 14, 514–516 (1989).
[CrossRef]

P. K. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986).
[CrossRef]

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef]

Other (2)

G. P. Agrawal, “Novel nonlinear phenomena,” in Nonlinear Fiber Optics, 4th ed. (Academic, 2006), pp. 469–477.

G. P. Agrawal, “Pulse propagation in fibers,” in Nonlinear Fiber Optics, 4th ed. (Academic, 2006), pp. 25–46.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

GVD and nonlinear value profile of PCF used.

Fig. 2.
Fig. 2.

20dB spectral width and median RIN as a function of the propagation distance. Considering (i) input shot noise, IRS effect and spontaneous Raman scattering, (ii) input shot noise and IRS effect, and (iii) just input shot noise.

Fig. 3.
Fig. 3.

Evolution of spectrum and RIN along PCF with (solid line) and without (dashed line) considering IRS effect.

Fig. 4.
Fig. 4.

Spectra of the third stage (a) without and (b) with considering IRS effect.

Fig. 5.
Fig. 5.

(a) Median RIN, (b) 20dB spectral bandwidth with IRS effect and m-RIN without IRS effect as a function of propagation distance with different TOD coefficient β3. (c), (d) The output spectra and RIN with different β3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E(z,t)z=α2·E+ik2ikβkk!kEtk+iγ(1+iω0t)×[E(z,t)(tR(t)|E(z,tt)|2dt+iΓR(z,t))].
ΓR(Ω,z)Γ*R(Ω,z)=(2fRω0/γ)|ImR(Ω)|×[nth(|Ω|)+U(Ω)]δ(zz)δ(ΩΩ).
RIN=(ΔP)2/(P¯)2.

Metrics