Abstract

This paper describes the analysis of laser-based responsivity measurements using the Tunable Lasers in Photometry setup at the Physikalisch-Technische Bundesanstalt. An approach based on digital signal analysis is proposed to remove interference-caused oscillations in highly resolved spectral data from laser-based measurements, yielding an improved reproducibility and comparability of results. Digital filters are used to selectively suppress the frequency components of interference fringes visible in the measurement data. We describe the algorithm used and discuss the associated uncertainty components of laser-based measurements. Finally, we give examples of the calibration of different detectors with and without interference effects.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Anderson, N. P. Fox, and D. H. Nettleton, “Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry,” Appl. Opt. 31, 536–545 (1992).
    [CrossRef]
  2. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
    [CrossRef]
  3. N. Noorma, P. Toivanen, F. Manoocheri, and E. Ikonen, “Characterization of filter radiometers with a wavelength-tunable laser source,” Metrologia 40, S220–S223 (2003).
    [CrossRef]
  4. P. Blattner, “Achtung: Laserstrahlung!” METinfo16, 7–13 (2009).
  5. A. Sperling, O. Larionov, U. Grusemann, and S. Winter, “Stray-light correction of array spectroradiometers using tunable pulsed and cw lasers,” in Proceedings of the 9th International Conference on New Developments and Applications in Optical Radiometry (2005), pp. 93–94.
  6. S. Nevas, A. Sperling, S. Winter, A. Abd El Mageed, and P. Blattner, “Measurements of the spectral responsivity and f1′ values of photometers,” in Proceedings of the CIE Expert Symposium on Advances in Photometry and Colorimetry (CIE, 2008), pp. 44–48.
  7. A. Sperling and S. Nevas, “High accuracy measurements of the spectral responsivity of large area detectors for high irradiances using laser radiation,” in Proceedings of the 10th International Conference on New Developments and Applications in Optical Radiometry (2008).
  8. L. P. Boivin, “Diffusers in silicon-photodiode radiometers,” Appl. Opt. 21, 918–923 (1982).
    [CrossRef]
  9. V. Ahtee, S. W. Brown, T. C. Larason, K. R. Lykke, E. Ikonen, and M. Noorma, “Comparison of absolute spectral irradiance responsivity measurement techniques using wavelength-tunable lasers,” Appl. Opt. 46, 4228–4236 (2007).
    [CrossRef]
  10. D. Kress and R. Irmer, Angewandte Systemtheorie- kontinuierliche und zeitdiskrete Signalverarbeitung (VEB Verlag Technik, 1989).
  11. L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm and 1015 nm using a laser-based cryogenic radiometer,” Metrologia 37, 279–284 (2000).
    [CrossRef]
  12. R. D. Saunders and W. R. Ott, “Spectral irradiance measurements: effect of uv-produced fluorescence in integrating spheres,” Appl. Opt. 15, 827–828 (1976).
    [CrossRef]
  13. P.-S. Shaw and Z. Li, “On the fluorescence from integrating spheres,” Appl. Opt. 47, 3962–3967 (2008).
    [CrossRef]
  14. H. Shitomi and I. Saito, “Photoluminescence from white reference materials for spectral diffuse reflectance measurements upon exposure to radiation shorter than 400 nm,” Metrologia 43, S36–S40 (2006).
    [CrossRef]
  15. Bureau International des Poids et Measures, “Guide to the expression of uncertainty in measurement (GUM),” JCGM 100:1995, http://www.bipm.org/en/publications/guides/gum.html .
  16. “Evaluation of measurement data—supplement 1 to the ‘Guide to the expression of uncertainty in measurement’–propagation of distributions using a Monte Carlo method,” JCGM 101:2008, http://www.bipm.org/en/publications/guides/gum.html .
  17. R. Christoph and H.-J. Neumann, Multisensor Coordinate Metrology (SV Cooporate Media, 2007).
  18. S. Winter and A. Sperling, “Uncertainty analysis of a photometer calibration at the DSR setup of the PTB,” in Proceedings of the 2nd Expert Symposium on Measurement Uncertainty (CIE, 2006), pp. 139–142.
  19. M. Werner, Digitale Signalverarbeitung mit MATLAB (Vieweg Verlag, 2003).
  20. A. Quinquis, Digital Signal Processing Using MATLAB (ISTE, 2008).
  21. A. Link and C. Elster, “Uncertainty evaluation for IIR filtering using a state-space approach,” Meas. Sci. Technol. 20, 055104 (2009).
    [CrossRef]

2009 (1)

A. Link and C. Elster, “Uncertainty evaluation for IIR filtering using a state-space approach,” Meas. Sci. Technol. 20, 055104 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (2)

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
[CrossRef]

H. Shitomi and I. Saito, “Photoluminescence from white reference materials for spectral diffuse reflectance measurements upon exposure to radiation shorter than 400 nm,” Metrologia 43, S36–S40 (2006).
[CrossRef]

2003 (1)

N. Noorma, P. Toivanen, F. Manoocheri, and E. Ikonen, “Characterization of filter radiometers with a wavelength-tunable laser source,” Metrologia 40, S220–S223 (2003).
[CrossRef]

2000 (1)

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm and 1015 nm using a laser-based cryogenic radiometer,” Metrologia 37, 279–284 (2000).
[CrossRef]

1992 (1)

1982 (1)

1976 (1)

Abd El Mageed, A.

S. Nevas, A. Sperling, S. Winter, A. Abd El Mageed, and P. Blattner, “Measurements of the spectral responsivity and f1′ values of photometers,” in Proceedings of the CIE Expert Symposium on Advances in Photometry and Colorimetry (CIE, 2008), pp. 44–48.

Ahtee, V.

Anderson, V. E.

Blattner, P.

S. Nevas, A. Sperling, S. Winter, A. Abd El Mageed, and P. Blattner, “Measurements of the spectral responsivity and f1′ values of photometers,” in Proceedings of the CIE Expert Symposium on Advances in Photometry and Colorimetry (CIE, 2008), pp. 44–48.

P. Blattner, “Achtung: Laserstrahlung!” METinfo16, 7–13 (2009).

Boivin, L. P.

Brown, S. W.

Christoph, R.

R. Christoph and H.-J. Neumann, Multisensor Coordinate Metrology (SV Cooporate Media, 2007).

Elster, C.

A. Link and C. Elster, “Uncertainty evaluation for IIR filtering using a state-space approach,” Meas. Sci. Technol. 20, 055104 (2009).
[CrossRef]

Eppeldauer, G. P.

Fischer, J.

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm and 1015 nm using a laser-based cryogenic radiometer,” Metrologia 37, 279–284 (2000).
[CrossRef]

Fox, N. P.

Grusemann, U.

A. Sperling, O. Larionov, U. Grusemann, and S. Winter, “Stray-light correction of array spectroradiometers using tunable pulsed and cw lasers,” in Proceedings of the 9th International Conference on New Developments and Applications in Optical Radiometry (2005), pp. 93–94.

Hartmann, J.

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm and 1015 nm using a laser-based cryogenic radiometer,” Metrologia 37, 279–284 (2000).
[CrossRef]

Ikonen, E.

V. Ahtee, S. W. Brown, T. C. Larason, K. R. Lykke, E. Ikonen, and M. Noorma, “Comparison of absolute spectral irradiance responsivity measurement techniques using wavelength-tunable lasers,” Appl. Opt. 46, 4228–4236 (2007).
[CrossRef]

N. Noorma, P. Toivanen, F. Manoocheri, and E. Ikonen, “Characterization of filter radiometers with a wavelength-tunable laser source,” Metrologia 40, S220–S223 (2003).
[CrossRef]

Irmer, R.

D. Kress and R. Irmer, Angewandte Systemtheorie- kontinuierliche und zeitdiskrete Signalverarbeitung (VEB Verlag Technik, 1989).

Johannsen, U.

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm and 1015 nm using a laser-based cryogenic radiometer,” Metrologia 37, 279–284 (2000).
[CrossRef]

Kress, D.

D. Kress and R. Irmer, Angewandte Systemtheorie- kontinuierliche und zeitdiskrete Signalverarbeitung (VEB Verlag Technik, 1989).

Larason, T. C.

Larionov, O.

A. Sperling, O. Larionov, U. Grusemann, and S. Winter, “Stray-light correction of array spectroradiometers using tunable pulsed and cw lasers,” in Proceedings of the 9th International Conference on New Developments and Applications in Optical Radiometry (2005), pp. 93–94.

Li, Z.

Link, A.

A. Link and C. Elster, “Uncertainty evaluation for IIR filtering using a state-space approach,” Meas. Sci. Technol. 20, 055104 (2009).
[CrossRef]

Lykke, K. R.

Manoocheri, F.

N. Noorma, P. Toivanen, F. Manoocheri, and E. Ikonen, “Characterization of filter radiometers with a wavelength-tunable laser source,” Metrologia 40, S220–S223 (2003).
[CrossRef]

Nettleton, D. H.

Neumann, H.-J.

R. Christoph and H.-J. Neumann, Multisensor Coordinate Metrology (SV Cooporate Media, 2007).

Nevas, S.

S. Nevas, A. Sperling, S. Winter, A. Abd El Mageed, and P. Blattner, “Measurements of the spectral responsivity and f1′ values of photometers,” in Proceedings of the CIE Expert Symposium on Advances in Photometry and Colorimetry (CIE, 2008), pp. 44–48.

A. Sperling and S. Nevas, “High accuracy measurements of the spectral responsivity of large area detectors for high irradiances using laser radiation,” in Proceedings of the 10th International Conference on New Developments and Applications in Optical Radiometry (2008).

Noorma, M.

Noorma, N.

N. Noorma, P. Toivanen, F. Manoocheri, and E. Ikonen, “Characterization of filter radiometers with a wavelength-tunable laser source,” Metrologia 40, S220–S223 (2003).
[CrossRef]

Ott, W. R.

Quinquis, A.

A. Quinquis, Digital Signal Processing Using MATLAB (ISTE, 2008).

Saito, I.

H. Shitomi and I. Saito, “Photoluminescence from white reference materials for spectral diffuse reflectance measurements upon exposure to radiation shorter than 400 nm,” Metrologia 43, S36–S40 (2006).
[CrossRef]

Saunders, R. D.

Shaw, P.-S.

Shitomi, H.

H. Shitomi and I. Saito, “Photoluminescence from white reference materials for spectral diffuse reflectance measurements upon exposure to radiation shorter than 400 nm,” Metrologia 43, S36–S40 (2006).
[CrossRef]

Sperling, A.

S. Winter and A. Sperling, “Uncertainty analysis of a photometer calibration at the DSR setup of the PTB,” in Proceedings of the 2nd Expert Symposium on Measurement Uncertainty (CIE, 2006), pp. 139–142.

S. Nevas, A. Sperling, S. Winter, A. Abd El Mageed, and P. Blattner, “Measurements of the spectral responsivity and f1′ values of photometers,” in Proceedings of the CIE Expert Symposium on Advances in Photometry and Colorimetry (CIE, 2008), pp. 44–48.

A. Sperling and S. Nevas, “High accuracy measurements of the spectral responsivity of large area detectors for high irradiances using laser radiation,” in Proceedings of the 10th International Conference on New Developments and Applications in Optical Radiometry (2008).

A. Sperling, O. Larionov, U. Grusemann, and S. Winter, “Stray-light correction of array spectroradiometers using tunable pulsed and cw lasers,” in Proceedings of the 9th International Conference on New Developments and Applications in Optical Radiometry (2005), pp. 93–94.

Toivanen, P.

N. Noorma, P. Toivanen, F. Manoocheri, and E. Ikonen, “Characterization of filter radiometers with a wavelength-tunable laser source,” Metrologia 40, S220–S223 (2003).
[CrossRef]

Werner, L.

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm and 1015 nm using a laser-based cryogenic radiometer,” Metrologia 37, 279–284 (2000).
[CrossRef]

Werner, M.

M. Werner, Digitale Signalverarbeitung mit MATLAB (Vieweg Verlag, 2003).

Winter, S.

S. Winter and A. Sperling, “Uncertainty analysis of a photometer calibration at the DSR setup of the PTB,” in Proceedings of the 2nd Expert Symposium on Measurement Uncertainty (CIE, 2006), pp. 139–142.

A. Sperling, O. Larionov, U. Grusemann, and S. Winter, “Stray-light correction of array spectroradiometers using tunable pulsed and cw lasers,” in Proceedings of the 9th International Conference on New Developments and Applications in Optical Radiometry (2005), pp. 93–94.

S. Nevas, A. Sperling, S. Winter, A. Abd El Mageed, and P. Blattner, “Measurements of the spectral responsivity and f1′ values of photometers,” in Proceedings of the CIE Expert Symposium on Advances in Photometry and Colorimetry (CIE, 2008), pp. 44–48.

Appl. Opt. (6)

Meas. Sci. Technol. (1)

A. Link and C. Elster, “Uncertainty evaluation for IIR filtering using a state-space approach,” Meas. Sci. Technol. 20, 055104 (2009).
[CrossRef]

Metrologia (3)

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm and 1015 nm using a laser-based cryogenic radiometer,” Metrologia 37, 279–284 (2000).
[CrossRef]

N. Noorma, P. Toivanen, F. Manoocheri, and E. Ikonen, “Characterization of filter radiometers with a wavelength-tunable laser source,” Metrologia 40, S220–S223 (2003).
[CrossRef]

H. Shitomi and I. Saito, “Photoluminescence from white reference materials for spectral diffuse reflectance measurements upon exposure to radiation shorter than 400 nm,” Metrologia 43, S36–S40 (2006).
[CrossRef]

Other (11)

Bureau International des Poids et Measures, “Guide to the expression of uncertainty in measurement (GUM),” JCGM 100:1995, http://www.bipm.org/en/publications/guides/gum.html .

“Evaluation of measurement data—supplement 1 to the ‘Guide to the expression of uncertainty in measurement’–propagation of distributions using a Monte Carlo method,” JCGM 101:2008, http://www.bipm.org/en/publications/guides/gum.html .

R. Christoph and H.-J. Neumann, Multisensor Coordinate Metrology (SV Cooporate Media, 2007).

S. Winter and A. Sperling, “Uncertainty analysis of a photometer calibration at the DSR setup of the PTB,” in Proceedings of the 2nd Expert Symposium on Measurement Uncertainty (CIE, 2006), pp. 139–142.

M. Werner, Digitale Signalverarbeitung mit MATLAB (Vieweg Verlag, 2003).

A. Quinquis, Digital Signal Processing Using MATLAB (ISTE, 2008).

P. Blattner, “Achtung: Laserstrahlung!” METinfo16, 7–13 (2009).

A. Sperling, O. Larionov, U. Grusemann, and S. Winter, “Stray-light correction of array spectroradiometers using tunable pulsed and cw lasers,” in Proceedings of the 9th International Conference on New Developments and Applications in Optical Radiometry (2005), pp. 93–94.

S. Nevas, A. Sperling, S. Winter, A. Abd El Mageed, and P. Blattner, “Measurements of the spectral responsivity and f1′ values of photometers,” in Proceedings of the CIE Expert Symposium on Advances in Photometry and Colorimetry (CIE, 2008), pp. 44–48.

A. Sperling and S. Nevas, “High accuracy measurements of the spectral responsivity of large area detectors for high irradiances using laser radiation,” in Proceedings of the 10th International Conference on New Developments and Applications in Optical Radiometry (2008).

D. Kress and R. Irmer, Angewandte Systemtheorie- kontinuierliche und zeitdiskrete Signalverarbeitung (VEB Verlag Technik, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic sketch of the TULIP facility for the irradiance calibration and characterization of detectors in a uniform radiation field. The output can be either an integrating sphere or a tapered multimode fiber (TMF). Using a calibrated aperture in front of the sphere, this setup can also be used for radiance responsivity measurements.

Fig. 2.
Fig. 2.

Output power of the various tunable CW lasers used in the TULIP facility. Between 358 and 460 nm, the frequency of a Ti:Sa laser operating within the spectral range from 690 to 960 nm is doubled using an intracavity resonator with five different LBO crystals. Dye lasers are used in the spectral range from 560 to 700 nm. Between 457 to 532 nm the usable spectral radiation is complemented by single lines from an Ar+ laser and the Nd:YVO4 pump lasers.

Fig. 3.
Fig. 3.

Output power of the quasi-CW laser system used in the TULIP setup. A mode-locked Ti:Sa laser with OPO and frequency doubling and tripling is used to cover the spectral range from 230 to 1600 nm and from 1700 to 3000 nm.

Fig. 4.
Fig. 4.

(a) Irradiance uniformity at the wavelength of 570 nm in the measurement plane achieved by the output of the integrating sphere at a distance of about 700 mm. The variation of the irradiance is ΔE±0.05% within the central area with a diameter of 30 mm. (b) Irradiance uniformity at the wavelength of 410 nm at the measurement plane caused by the output of the tapered multimode fiber at a distance of about 700 mm. The variation of the irradiance is ΔE±0.5% within the central area with a diameter of 30 mm.

Fig. 5.
Fig. 5.

Block diagram of the digital filtering algorithm.

Fig. 6.
Fig. 6.

(a) Measured spectral irradiance responsivity of a silicon photodiode (Hamamatsu S1337) with a protective window and a limiting aperture affected by interference (blue curve). The interference-corrected data (green curve) and the calibration data from a monochromator-based setup (red curve) are also shown. (b) The FFT measurement data before (blue curve) and after (green curve) applying the digital filtering algorithm.

Fig. 7.
Fig. 7.

(a) Measured spectral radiance responsivity of the pyrometer LP3 (blue curve, left axis), the data filtered by applying the digital filtering algorithm (green curve, left axis), and the associated measurement uncertainty (dashed black curve, right axis). (b) Close-up of the measurement data within the spectral range between 647.5 and 651 nm.

Fig. 8.
Fig. 8.

Spectrum of the measured radiance responsivity of the pyrometer before (blue curve) and after (green curve) applying the digital filtering algorithm for the interference correction.

Fig. 9.
Fig. 9.

Measurement data (blue squares), incoherent measurement-based calibration data (red triangles), and the results of the filtering algorithm applied to only a few periods of interference fringes (green diamonds). (a) The optimal data selection for the digital filtering algorithm. (b) Data over too few periods of interference oscillations are chosen, so only a lowpass filter can be applied. (c) The first and the last data points used for the filtering are too far away from the mean value. The black cross shows the mean value of the measured data at the mean wavelength.

Fig. 10.
Fig. 10.

Simulated data (blue curve), incoherent measurement-based calibration data (red curve), and the results of the filtering algorithm applied (green curve). (a) Close-up of the measurement data, (b) the data in the spatial frequency domain, and (c) the deviation between the filtered data and the calibration data.

Fig. 11.
Fig. 11.

(a) Spectral irradiance responsivity of Photometer #1, 30 mm diameter; Photometer #2, 10 mm; and Photometer #3, 30 mm, measured with the CW lasers of the TULIP facility. (b) Relative expanded uncertainties (k=2) of the spectral irradiance responsivity values measured at the TULIP facility. The values are shown on a logarithmic scale and start to increase at spectral responsivity values below 103AW1nm2.

Tables (2)

Tables Icon

Table 1. Filter Parameters Selected for the Photodiode Measurements according to the Tolerance Scheme

Tables Icon

Table 2. Example of an Uncertainty Budget for a Spectral Irradiance Responsivity Measurement of a Diffuser-Type Photometer at a Wavelength of 600 nm Using the TULIP Facility

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

sDUT(λ)=iDUT(λ)/iMon(λ)iTrap(λ)/iMon(λ)·sTrap(λ)·ATrap·δtrans(λ)·CF(λ),
sDUT(λ)=UDUT(λ)/UMon(λ)UTrap(λ)/UMon(λ)·RTrapRDUT·sTrap(λ)·ATrap·δtrans(λ)·δun,rad(λ)·δwl(λ)·δspacial straylight(λ)·δd·δstability·δspectral straylight(λ)·δspeckle·δpolarisation(λ)·δfringes(λ)·δbw(λ)·δtemp(λ).
δun,rad(λ)=(ADUTsrel,DUT(x,y,λ)dA)/(ADUTsrel,DUT(x,y,λ)·Erel(x,y,λ)dA)·(ATrapsrel,Trap(x,y,λ)·Erel(x,y,λ)dA)/(ATrapsrel,Trap(x,y,λ)dA),
ΔsDUT(λ)=sDUT(λ)λ·ΔλDUTsTrap(λ)+(1/sTrap(λ))λ·sDUT(λ)·ΔλTrap.
fs>2·fmax,
Xk=n=0N-1xn·ej2πknN
H(z)=k=0Nbk·zk1+k=1Mak·zk,
Y(z)=H(z)·X(z).
yn=1Nk=0N1Yk·ej2πknN.
yn=xn*hn=m=+xnm·hm.

Metrics