Abstract

Commercial light curtains use a technique known as muting to differentiate between work pieces and other objects (e.g., human limbs) based on precise model knowledge of the process. At manually fed machinery (e.g., bench saws), such precise models cannot be derived due to the way the machinery is used. This paper presents a multispectral scanning sensor to classify an object’s surface material as a new approach for the problem. The system is meant to detect the presence of limbs and therefore optimized for human skin detection. Evaluation on a test set of skin and (wet) wood samples showed a sufficiently high reliability with respect to safety standards.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Reinert, O. Schwaneberg, N. Jung, S. Ullmann, W. Olbert, D. Kamin, and R. Kohler, “Finger and hand protection on circular table and panel saws,” Saf. Sci. 47, 1175–1184 (2009).
    [CrossRef]
  2. O. Schwaneberg, U. Köckemann, H. Steiner, and N. Jung, “A Near-Infrared LED-based Material Classification Sensor System,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD4.
  3. J. A. Jacquez, J. Huss, W. McKeehan, J. M. Dimitroff, and H. F. Kuppenheim, “Spectral Reflectance of Human Skin in the Region 0.7–2.6 μm,” J. Appl. Physiol. 8, 297 (1955).
  4. I. Pavlidis, P. Symosek, B. Fritz, and N. Papanikolopoulos, “A near-infrared fusion scheme for automatic detection of vehicle passengers,” in IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS ’99) Proceedings, (IEEE, 1999), pp. 41–48.
  5. A. S. Nunez and M. J. Mendenhall, “Detection of Human Skin in Near Infrared Hyperspectral Imagery,” in Proceedings of IEEE Symposium on Geoscience and Remote Sensing (IGARSS, 2008), vol. 2, pp. 621–624.
  6. M. Stoerring, “Computer Vision and Human Skin Colour,” PhD thesis (Aalborg University, 2004).
  7. D. Reinert, N. Jung, and O. Schwaneberg, “A manually fed machine for working on materials, objects and the like, and protective means for such a machine,” European patent EP2054193/EP2193878 (6May2009).
  8. K. H. Yang and J. D. Kingsley, “Calculation of coupling losses between light emitting diodes and low-loss optical fibers,” Appl. Opt. 14, 288–293 (1975).
    [CrossRef]
  9. D. J. Schroeder, “Signal-to-noise ratio,” in Astronomical Optics, (Academic, 1999), pp. 433–438.

2009 (1)

D. Reinert, O. Schwaneberg, N. Jung, S. Ullmann, W. Olbert, D. Kamin, and R. Kohler, “Finger and hand protection on circular table and panel saws,” Saf. Sci. 47, 1175–1184 (2009).
[CrossRef]

1975 (1)

1955 (1)

J. A. Jacquez, J. Huss, W. McKeehan, J. M. Dimitroff, and H. F. Kuppenheim, “Spectral Reflectance of Human Skin in the Region 0.7–2.6 μm,” J. Appl. Physiol. 8, 297 (1955).

Dimitroff, J. M.

J. A. Jacquez, J. Huss, W. McKeehan, J. M. Dimitroff, and H. F. Kuppenheim, “Spectral Reflectance of Human Skin in the Region 0.7–2.6 μm,” J. Appl. Physiol. 8, 297 (1955).

Fritz, B.

I. Pavlidis, P. Symosek, B. Fritz, and N. Papanikolopoulos, “A near-infrared fusion scheme for automatic detection of vehicle passengers,” in IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS ’99) Proceedings, (IEEE, 1999), pp. 41–48.

Huss, J.

J. A. Jacquez, J. Huss, W. McKeehan, J. M. Dimitroff, and H. F. Kuppenheim, “Spectral Reflectance of Human Skin in the Region 0.7–2.6 μm,” J. Appl. Physiol. 8, 297 (1955).

Jacquez, J. A.

J. A. Jacquez, J. Huss, W. McKeehan, J. M. Dimitroff, and H. F. Kuppenheim, “Spectral Reflectance of Human Skin in the Region 0.7–2.6 μm,” J. Appl. Physiol. 8, 297 (1955).

Jung, N.

D. Reinert, O. Schwaneberg, N. Jung, S. Ullmann, W. Olbert, D. Kamin, and R. Kohler, “Finger and hand protection on circular table and panel saws,” Saf. Sci. 47, 1175–1184 (2009).
[CrossRef]

O. Schwaneberg, U. Köckemann, H. Steiner, and N. Jung, “A Near-Infrared LED-based Material Classification Sensor System,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD4.

D. Reinert, N. Jung, and O. Schwaneberg, “A manually fed machine for working on materials, objects and the like, and protective means for such a machine,” European patent EP2054193/EP2193878 (6May2009).

Kamin, D.

D. Reinert, O. Schwaneberg, N. Jung, S. Ullmann, W. Olbert, D. Kamin, and R. Kohler, “Finger and hand protection on circular table and panel saws,” Saf. Sci. 47, 1175–1184 (2009).
[CrossRef]

Kingsley, J. D.

Köckemann, U.

O. Schwaneberg, U. Köckemann, H. Steiner, and N. Jung, “A Near-Infrared LED-based Material Classification Sensor System,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD4.

Kohler, R.

D. Reinert, O. Schwaneberg, N. Jung, S. Ullmann, W. Olbert, D. Kamin, and R. Kohler, “Finger and hand protection on circular table and panel saws,” Saf. Sci. 47, 1175–1184 (2009).
[CrossRef]

Kuppenheim, H. F.

J. A. Jacquez, J. Huss, W. McKeehan, J. M. Dimitroff, and H. F. Kuppenheim, “Spectral Reflectance of Human Skin in the Region 0.7–2.6 μm,” J. Appl. Physiol. 8, 297 (1955).

McKeehan, W.

J. A. Jacquez, J. Huss, W. McKeehan, J. M. Dimitroff, and H. F. Kuppenheim, “Spectral Reflectance of Human Skin in the Region 0.7–2.6 μm,” J. Appl. Physiol. 8, 297 (1955).

Mendenhall, M. J.

A. S. Nunez and M. J. Mendenhall, “Detection of Human Skin in Near Infrared Hyperspectral Imagery,” in Proceedings of IEEE Symposium on Geoscience and Remote Sensing (IGARSS, 2008), vol. 2, pp. 621–624.

Nunez, A. S.

A. S. Nunez and M. J. Mendenhall, “Detection of Human Skin in Near Infrared Hyperspectral Imagery,” in Proceedings of IEEE Symposium on Geoscience and Remote Sensing (IGARSS, 2008), vol. 2, pp. 621–624.

Olbert, W.

D. Reinert, O. Schwaneberg, N. Jung, S. Ullmann, W. Olbert, D. Kamin, and R. Kohler, “Finger and hand protection on circular table and panel saws,” Saf. Sci. 47, 1175–1184 (2009).
[CrossRef]

Papanikolopoulos, N.

I. Pavlidis, P. Symosek, B. Fritz, and N. Papanikolopoulos, “A near-infrared fusion scheme for automatic detection of vehicle passengers,” in IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS ’99) Proceedings, (IEEE, 1999), pp. 41–48.

Pavlidis, I.

I. Pavlidis, P. Symosek, B. Fritz, and N. Papanikolopoulos, “A near-infrared fusion scheme for automatic detection of vehicle passengers,” in IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS ’99) Proceedings, (IEEE, 1999), pp. 41–48.

Reinert, D.

D. Reinert, O. Schwaneberg, N. Jung, S. Ullmann, W. Olbert, D. Kamin, and R. Kohler, “Finger and hand protection on circular table and panel saws,” Saf. Sci. 47, 1175–1184 (2009).
[CrossRef]

D. Reinert, N. Jung, and O. Schwaneberg, “A manually fed machine for working on materials, objects and the like, and protective means for such a machine,” European patent EP2054193/EP2193878 (6May2009).

Schroeder, D. J.

D. J. Schroeder, “Signal-to-noise ratio,” in Astronomical Optics, (Academic, 1999), pp. 433–438.

Schwaneberg, O.

D. Reinert, O. Schwaneberg, N. Jung, S. Ullmann, W. Olbert, D. Kamin, and R. Kohler, “Finger and hand protection on circular table and panel saws,” Saf. Sci. 47, 1175–1184 (2009).
[CrossRef]

O. Schwaneberg, U. Köckemann, H. Steiner, and N. Jung, “A Near-Infrared LED-based Material Classification Sensor System,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD4.

D. Reinert, N. Jung, and O. Schwaneberg, “A manually fed machine for working on materials, objects and the like, and protective means for such a machine,” European patent EP2054193/EP2193878 (6May2009).

Steiner, H.

O. Schwaneberg, U. Köckemann, H. Steiner, and N. Jung, “A Near-Infrared LED-based Material Classification Sensor System,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD4.

Stoerring, M.

M. Stoerring, “Computer Vision and Human Skin Colour,” PhD thesis (Aalborg University, 2004).

Symosek, P.

I. Pavlidis, P. Symosek, B. Fritz, and N. Papanikolopoulos, “A near-infrared fusion scheme for automatic detection of vehicle passengers,” in IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS ’99) Proceedings, (IEEE, 1999), pp. 41–48.

Ullmann, S.

D. Reinert, O. Schwaneberg, N. Jung, S. Ullmann, W. Olbert, D. Kamin, and R. Kohler, “Finger and hand protection on circular table and panel saws,” Saf. Sci. 47, 1175–1184 (2009).
[CrossRef]

Yang, K. H.

Appl. Opt. (1)

J. Appl. Physiol. (1)

J. A. Jacquez, J. Huss, W. McKeehan, J. M. Dimitroff, and H. F. Kuppenheim, “Spectral Reflectance of Human Skin in the Region 0.7–2.6 μm,” J. Appl. Physiol. 8, 297 (1955).

Saf. Sci. (1)

D. Reinert, O. Schwaneberg, N. Jung, S. Ullmann, W. Olbert, D. Kamin, and R. Kohler, “Finger and hand protection on circular table and panel saws,” Saf. Sci. 47, 1175–1184 (2009).
[CrossRef]

Other (6)

O. Schwaneberg, U. Köckemann, H. Steiner, and N. Jung, “A Near-Infrared LED-based Material Classification Sensor System,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD4.

I. Pavlidis, P. Symosek, B. Fritz, and N. Papanikolopoulos, “A near-infrared fusion scheme for automatic detection of vehicle passengers,” in IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS ’99) Proceedings, (IEEE, 1999), pp. 41–48.

A. S. Nunez and M. J. Mendenhall, “Detection of Human Skin in Near Infrared Hyperspectral Imagery,” in Proceedings of IEEE Symposium on Geoscience and Remote Sensing (IGARSS, 2008), vol. 2, pp. 621–624.

M. Stoerring, “Computer Vision and Human Skin Colour,” PhD thesis (Aalborg University, 2004).

D. Reinert, N. Jung, and O. Schwaneberg, “A manually fed machine for working on materials, objects and the like, and protective means for such a machine,” European patent EP2054193/EP2193878 (6May2009).

D. J. Schroeder, “Signal-to-noise ratio,” in Astronomical Optics, (Academic, 1999), pp. 433–438.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Concept of an ideal sensor.

Fig. 2.
Fig. 2.

Simulations of beams projected at a distance of 500 mm using a transmitter without (left) and with (right) a fiber optic between the LEDs and the lens.

Fig. 3.
Fig. 3.

Virtually augmented photograph of the implemented sensor.

Fig. 4.
Fig. 4.

Photographs and simulations of beams created by two different setups, projected at dmin=100mm distance using a single LED with λ^0=830nm.

Fig. 5.
Fig. 5.

Comparison of a single LED’s irradiance with and without a 7 mm field stop, projected at d=250mm (simulation).

Fig. 6.
Fig. 6.

Comparison of the ratio I830nmI1300nm measured at a wooded board and a forefinger using a setup with and without a 7 mm field stop.

Fig. 7.
Fig. 7.

Medians of measured ratios of skin, wood, plastic, and leather using a sensor with a 20 mm fiber and focused receiver. Error bars show minimum and maximum values for each class and ratio.

Tables (1)

Tables Icon

Table 1. Signal-to-Noise Ratio of Different Setups Scanning a Hand’s Palm

Metrics