Abstract

Wind speed can be measured remotely, with varying degrees of success, using interferometry of Doppler-shifted optical spectra. Under favorable conditions, active systems using laser pulse backscatter are capable of high resolution; passive systems, which measure Doppler shifts of atmospheric emission lines in the mesosphere, have also been shown. Two-beam interferometry of Doppler-shifted absorption lines has not been previously investigated; we describe such an effort here. Even in a well-defined environment, measuring absorption line Doppler shifts requires overcoming several technical hurdles in order to obtain sensitivity to wind speeds on the order of 10m/s. These hurdles include precise knowledge of the shape of the absorption line, tight, stable filtering, and understanding precisely how an interferometer phase should respond to a change in the absorption profile. We discuss the instrument design, a Michelson interferometer and Fabry–Perot filter, and include an analysis of how to choose the optimal optical path difference of the two beams for a given spectrum and filter. We discuss two beam interferometric measurements of emission line and absorption line Doppler shifts, and include an illustration of the effects of filtering on LIDAR Doppler interferometry. Finally, we discuss the construction and implementation of a Michelson interferometer used to measure Doppler shifts of oxygen absorption lines and present results obtained with 5m/s wind speed measurement precision. Although the theoretical shot noise limited Doppler wind speed measurement of the system described can be less than 1m/s, the instrument’s resolution limit is dominated by residual filter instability. Application of absorption line interferometry to determine atmospheric wind speeds remains problematic.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. National Research Council, “Summaries of recommended missions,” in Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond(National Academies, 2007), p. 137.
  2. W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
    [CrossRef]
  3. T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC, 2005).
  4. P. Hays, M. Dehring, L. Fisk, P. Tchoryk, I. Dors, J. Ryan, J. Wang, M. Hardesty, B. Gentry, and F. Hovis, “Space-based Doppler winds LIDAR: a vital national need,” in response to NRC Decadal Study Request for Information, http://space.hsv.usra.edu/LWG/Splash%20Papers/Hays.pdf .
  5. D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuv, “Wind-velocity lidar measurements by use of a Mach–Zehnder interferometer, comparison with a Mach–Zehnder interferometer, comparison with a Fabry–Perot interferometer,” Appl. Opt. 43, 173–182 (2004).
    [CrossRef]
  6. D. Bruneau, “Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 40, 391–399 (2001).
    [CrossRef]
  7. N. Cézard, A. Dolfi-Bouteyre, J. Huignard, and N. Cézard, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh–Mie lidar,” Appl. Opt. 48, 2321–2332(2009).
    [CrossRef]
  8. C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
    [CrossRef]
  9. European Space Agency, ADM-Aeolus Science Report, ESA SP-1311 (European Space Agency, 2008).
  10. G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
    [CrossRef]
  11. P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
    [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).
  13. PLEXUS Fact Sheet, http://www.kirtland.af.mil/library/factsheets/factsheet.asp?id=7917 .
  14. More accurately, the phase [Eq. (18)] is only valid for small linear variations in ν0 and τ, since, according to Eq. (8), the phase is never this simple for an absorption measurement. In that case, we would append a multiplier to Eq. (18) to represent a nonunity slope, which would disappear at Eq. (20) anyway.
  15. Recall that we expect the phase shift for a Doppler shift of an absorption line to be opposite what it would be for an emission line. For an emission line, and light traveling with the wind, the Doppler frequency shift is negative, and against the wind we expect it to be positive. The caveat is that the phase shift for an increasing frequency into the interferometer is negative with regard to the CCD and data acquisition system. So with the wind, the absorption profile phase shift should be negative, which it is.
  16. B. E. Grossman, C. Cahen, J. L. Lesne, J. Benard, and G. Leboudec, “Intensities and atmospheric broadening coefficients measured for O2 and H2O absorption lines selected for DIAL monitoring of both temperature and humidity. 1:O2,” Appl. Opt. 25, 4261–4267 (1986).
    [CrossRef]

2009 (2)

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

N. Cézard, A. Dolfi-Bouteyre, J. Huignard, and N. Cézard, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh–Mie lidar,” Appl. Opt. 48, 2321–2332(2009).
[CrossRef]

2004 (1)

2001 (1)

1995 (1)

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

1993 (2)

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

1986 (1)

Abreu, V. J.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Alunni, J. M.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Anderson, J. R.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Atlas, R. M.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Baker, W. E.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Benard, J.

Born, M.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).

Bowdle, D. A.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Brown, R. A.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Brun, J.-F.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Brune, S.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Bruneau, D.

Cahen, C.

Cézard, N.

Charlot, P.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Cogger, L. L.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Desaulniers, D.-L.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Dobbs, M. E.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Dolfi-Bouteyre, A.

Emmitt, G. D.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Evans, W. F. J.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Fujii, T.

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC, 2005).

Fukuchi, T.

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC, 2005).

Garnier, A.

Gattinger, R. L.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Gault, W. A.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Gell, D. A.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Girod, F.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Grassl, H. J.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Grossman, B. E.

Grund, C. J.

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

Hardesty, R. M.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Harvie, D.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Hays, P. B.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Hersom, C.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Hertzog, A.

Howell, J.

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

Huignard, J.

Hum, R. H.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Kendall, D. J. W.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Krishnamurti, T. N.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Leboudec, G.

Lesne, J. L.

Llewellyn, E. J.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Lorenc, A. C.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Lowe, R. P.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

McElroy, J.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Menzies, R. T.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Molinari, J. E.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Ohrt, J.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Paegle, J.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Pasternak, F.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Peillet, O.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Pierce, R.

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

Porteneuv, J.

Post, M. J.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Powell, I.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Robertson, F.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Rochon, Y.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Shepherd, G. G.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Skinner, W. R.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Solheim, B. H.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Stephens, M.

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

Thuillier, G.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Ward, W. E.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Wiens, R. H.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Wimperis, J.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).

Appl. Opt. (4)

Bull. Am. Meteorol. Soc. (1)

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, and J. McElroy, “Lidar-measured winds from space: A key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

J. Geophys. Res. (2)

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The high resolution Doppler imager on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Proc. SPIE (1)

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

Other (8)

European Space Agency, ADM-Aeolus Science Report, ESA SP-1311 (European Space Agency, 2008).

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC, 2005).

P. Hays, M. Dehring, L. Fisk, P. Tchoryk, I. Dors, J. Ryan, J. Wang, M. Hardesty, B. Gentry, and F. Hovis, “Space-based Doppler winds LIDAR: a vital national need,” in response to NRC Decadal Study Request for Information, http://space.hsv.usra.edu/LWG/Splash%20Papers/Hays.pdf .

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).

PLEXUS Fact Sheet, http://www.kirtland.af.mil/library/factsheets/factsheet.asp?id=7917 .

More accurately, the phase [Eq. (18)] is only valid for small linear variations in ν0 and τ, since, according to Eq. (8), the phase is never this simple for an absorption measurement. In that case, we would append a multiplier to Eq. (18) to represent a nonunity slope, which would disappear at Eq. (20) anyway.

Recall that we expect the phase shift for a Doppler shift of an absorption line to be opposite what it would be for an emission line. For an emission line, and light traveling with the wind, the Doppler frequency shift is negative, and against the wind we expect it to be positive. The caveat is that the phase shift for an increasing frequency into the interferometer is negative with regard to the CCD and data acquisition system. So with the wind, the absorption profile phase shift should be negative, which it is.

National Research Council, “Summaries of recommended missions,” in Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond(National Academies, 2007), p. 137.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Atmospheric absorption lines near 13,000cm1 (760 nm) include the O2 A-band. This paper concentrates on the deeper lines located at 13,099 and 13,101cm1, shown here for an approximately 50 m path in air at 1500m above sea level.

Fig. 2.
Fig. 2.

To illustrate the effects on phase measurements of a filtered spectrum, a LIDAR return at 355 nm is used as an example.

Fig. 3.
Fig. 3.

Visibility and merit function for the example spectra in Fig. 2.

Fig. 4.
Fig. 4.

Drift in the etalon mirror spacing of the example LIDAR will result in a phase change as seen by a two-beam interferometer.

Fig. 5.
Fig. 5.

Source spectrum for an absorption line measurement aligned to a doublet. Filters include a 3.8cm1 FWHM prefilter and a single-pass etalon. A detail of one of the lines is shown in the lower half of the figure. When well aligned, the resulting spectrum is a “goal post” and a Doppler shift results in slight height variations of the posts.

Fig. 6.
Fig. 6.

For the spectrum of Fig. 2, one may calculate the visibility V (dashed curve) and the wind sensitivity Φu to a Doppler wind speed u as a function of OPD (τ). The narrow emission line sensitivity (straight line) is shown for comparison. The lower curve is the merit function, with maxima at 2dm, where d is the etalon spacing and m is an integer.

Fig. 7.
Fig. 7.

Calculated sensitivity and visibility as a function of detuning the etalon through one FSR. Higher detail is shown in the lower curve, which indicates that 5% accuracy in wind speed conversion requires at least 3 nm etalon spacing accuracy.

Fig. 8.
Fig. 8.

Monolithic Michelson interferometer, with built in mirror tilt to generate a spatially varying interference pattern.

Fig. 9.
Fig. 9.

Interferometer section with fiber array and CCD. Also shown is a sample interferogram. Because the light is incident from a mode-scrambled fiber, all the interferograms are identical to the one shown here. On the bottom is a test of the stability of the system in EDS (wind equivalent Doppler shift) in m/s, using a laser locked to the 13,098.837cm1 absorption line. The straight line is a fit to the data. Interferometer drift over 60 s is less than 0.1m/s.

Fig. 10.
Fig. 10.

Filter section consisting of prefilter, etalon, collimating lenses, and fiber array. When complete, the filters are entirely surrounded by a low expansion ceramic and aluminum thermal shield. Fibers are arrayed corresponding to the symmetry of each device.

Fig. 11.
Fig. 11.

Schematic of the experiment.

Fig. 12.
Fig. 12.

Thermal drift in the fully enclosed interferometer and filter sections; passive temperature stabilization only.

Fig. 13.
Fig. 13.

Consecutive phase shift measurements where the etalon is deliberately tuned 150–200 nm off the absorption lines, resulting in essentially zero sensitivity to Doppler shifts (see Fig. 4). Shown is a comparison of drift/fluctuations with etalon feedback control off and on. Solid and hollow points represent with or against the wind, respectively.

Fig. 14.
Fig. 14.

Representative set of wind tunnel measurements. The sequence begins with the blower off, and ends with it off. Between, the blower setting is increased as shown, with alternate points either with or against the wind. Solid points represent against the wind direction. Each data point is about 15 s of integration time.

Tables (1)

Tables Icon

Table 1. Sample Parameters Used in Calculations

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

γ(τ)=0S(ν-ν0)exp(i2πντ)dν=γ(τ)exp(iΦ(τ))
V=γ(τ),
I(τ)=12+14[γ(τ)+γ*(τ)]=12+12VcosΦ(τ),
Φ=tan1(Imγ(τ)/Reγ(τ)).
ΦudΦdu=i(γ*dγduγdγ*du)/2|γ|2.
Φu=2πν0τc.
γ(τ)=0F(ν)S(νν0(1+u/c))exp(i2πντ)dν,
Φu=2πν0τc+ν0cIm[0S(ν)F(ν)exp(i2πντ)dν0S(ν)F(ν)exp(i2πντ)dν],
γ(τ)=exp(i2πν0(1+u/c)τ)exp(Γτ),
Φ(τ)=2πν0(1+u/c)τ,
V(τ)=γ(τ)=exp(Γτ).
ΔP=uP¯γ(τ)ΦusinΦ,
γ(τ)|Φu|=(2πν0τ/c)exp(Γτ).
M(Pv,τ)=Pνγ(τ)|Φu(τ)|,
SNRπ/2=|uΦu|P¯V(Φd2σd2+Φθ2σθ2+Φτ2στ2+)P¯2V2+2e(P¯+PB)ΔB/R+,
tanϕ=(j=0N1Ij(k)MjQ(k)/j=0N1Ij(k)MjI(k)),
σϕ=0.11/(Vne)(rad),
PD=neNpεQεIThcλ,
Φ=2πν0(P,T,)(1+u/c)τ(P,T,),
δΦ=2πδν0(1+u/c)τ+2πν0(1+u/c)δτ+2πν0τδu/c,
uEDScδu(c+u)=δν0ν0δττ,
ΔΦ/Φ=(L/d)(ΔC/C),

Metrics