Abstract

We present an analysis on the saturation of refractive index modulation of fiber Bragg gratings written in nonhydrogenated Ge-B co-doped single-mode photosensitive optical fiber by partially coherent pulsed UV beams. The UV beams of different spatial coherence properties were generated by second harmonic conversion of high repetition rate, high average power copper vapor laser (CVL) oscillators with different optical resonators. It is observed that for UV beams of higher spatial coherence, the fiber Bragg grating reflectivity growth was faster and saturation of refractive index modulation was higher. The experimental results are explained with the help of a physical model based on exponential decay of defect centers per unit volume on UV absorption in the fiber core. The subsequent increase in the refractive index was attributed to the structural modification and densification of the fiber core.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef]
  2. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  3. H. Patrick and S. L. Gilbert, “Growth of Bragg gratings produced by continuous wave ultra-violet light in optical fiber,” Opt. Lett. 18, 1484–1486 (1993).
    [CrossRef]
  4. H. Bartelt, K. Schuster, S. Unger, C. Chojetzki, M. Rothhardt, and I. Latka, “Single-pulse fiber Bragg gratings and specific coatings for use at elevated temperatures,” Appl. Opt. 46, 3417–3439 (2007).
    [CrossRef]
  5. C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–836 (1992).
    [CrossRef]
  6. D. P. Hand and P. St. J. Russell, “Photoinduced refractive index changes in germano-silicate fibers,” Opt. Lett. 15, 102–104 (1990).
    [CrossRef]
  7. G. Chen, Y. Li, L. Liu, Y. He, L. Xu, and W. Wang, “The photosensitivity and ultraviolet absorption change of Sn-doped silica film fabricated by modified chemical vapor deposition,” J. Appl. Phys. 96, 6153–6158 (2004).
    [CrossRef]
  8. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
    [CrossRef]
  9. L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Photoinduced absorption change in germanosilicate preforms: evidence for the color-center model of photosensitivity,” Appl. Opt. 34, 3436–3440 (1995).
    [CrossRef]
  10. B. Leconte, W.-X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, and H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge:SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–3020 (1997).
    [CrossRef]
  11. G. Brochu, S. LaRochelle, and N. Ayotte, “Dynamics of hydrogen diffusion as a key component of the photosensitivity response of hydrogen-loaded optical fibers,” J. Lightwave Technol. 27, 3123–3134 (2009).
    [CrossRef]
  12. J. Canning, “Photosensitization and photo-stabilization of laser-induced index changes in optical fibers,” Opt. Fiber Technol. 6, 275–289 (2000).
    [CrossRef]
  13. M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
    [CrossRef]
  14. J. A. Besley, L. Reekie, C. Weeks, T. Wang, and C. Murphy, “Grating writing model for materials with nonlinear photosensitive response,” J. Lightwave Technol. 27, 3123–3134 (2009).
    [CrossRef]
  15. B. Poumellec, I. Riant, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms: interferometric microscopy investigations,” Opt. Mater. 4, 404–409 (1995).
    [CrossRef]
  16. A. Lee, M. J. Withford, and J. M. Dawes, “Investigation into the power-law dependence of fibre Bragg grating growth,” Opt. Commun. 257, 261–269 (2006).
    [CrossRef]
  17. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
    [CrossRef]
  18. R. Mahakud, O. Prakash, S. K. Dixit, and J. K. Mittal, “Analysis on the laser beam pointing instability induced fringe shift and contrast dilution from different interferometers used for writing fiber Bragg grating,” Opt. Commun. 282, 2204–2211 (2009).
    [CrossRef]
  19. O. Prakash, S. K. Dixit, and R. Bhatangar, “On the role of coherence width and its evolution in a short pulse fundamental beam in second harmonic generation from beta barium borate,” IEEE J. Quantum Electron. 38, 603–613 (2002).
    [CrossRef]
  20. O. Prakash, R. Mahakud, H. S. Vora, and S. K. Dixit, “Cylindrical-lens-based wavefront-reversing shear interferometer for the spatial coherence measurement of UV radiations,” Opt. Eng. 45, 055601 (2006).
    [CrossRef]
  21. O. Prakash, R. Mahakud, S. K. Dixit, and U. Nundy, “Effect of the spatial coherence of ultraviolet radiation (255 nm) on the fabrication efficiency of phase mask based fiber Bragg gratings,” Opt. Commun. 263, 65–70 (2006).
    [CrossRef]
  22. P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
    [CrossRef]
  23. W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
    [CrossRef]

2009 (3)

2007 (1)

2006 (3)

A. Lee, M. J. Withford, and J. M. Dawes, “Investigation into the power-law dependence of fibre Bragg grating growth,” Opt. Commun. 257, 261–269 (2006).
[CrossRef]

O. Prakash, R. Mahakud, H. S. Vora, and S. K. Dixit, “Cylindrical-lens-based wavefront-reversing shear interferometer for the spatial coherence measurement of UV radiations,” Opt. Eng. 45, 055601 (2006).
[CrossRef]

O. Prakash, R. Mahakud, S. K. Dixit, and U. Nundy, “Effect of the spatial coherence of ultraviolet radiation (255 nm) on the fabrication efficiency of phase mask based fiber Bragg gratings,” Opt. Commun. 263, 65–70 (2006).
[CrossRef]

2004 (1)

G. Chen, Y. Li, L. Liu, Y. He, L. Xu, and W. Wang, “The photosensitivity and ultraviolet absorption change of Sn-doped silica film fabricated by modified chemical vapor deposition,” J. Appl. Phys. 96, 6153–6158 (2004).
[CrossRef]

2002 (1)

O. Prakash, S. K. Dixit, and R. Bhatangar, “On the role of coherence width and its evolution in a short pulse fundamental beam in second harmonic generation from beta barium borate,” IEEE J. Quantum Electron. 38, 603–613 (2002).
[CrossRef]

2001 (1)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

2000 (1)

J. Canning, “Photosensitization and photo-stabilization of laser-induced index changes in optical fibers,” Opt. Fiber Technol. 6, 275–289 (2000).
[CrossRef]

1997 (2)

1995 (3)

B. Poumellec, I. Riant, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms: interferometric microscopy investigations,” Opt. Mater. 4, 404–409 (1995).
[CrossRef]

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Photoinduced absorption change in germanosilicate preforms: evidence for the color-center model of photosensitivity,” Appl. Opt. 34, 3436–3440 (1995).
[CrossRef]

1994 (1)

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

1993 (2)

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

H. Patrick and S. L. Gilbert, “Growth of Bragg gratings produced by continuous wave ultra-violet light in optical fiber,” Opt. Lett. 18, 1484–1486 (1993).
[CrossRef]

1992 (1)

1990 (1)

1989 (1)

Archambault, J. L.

Askins, C. G.

Ayotte, N.

Bartelt, H.

Bashkansky, M.

Bayon, J. F.

B. Leconte, W.-X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, and H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge:SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–3020 (1997).
[CrossRef]

B. Poumellec, I. Riant, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms: interferometric microscopy investigations,” Opt. Mater. 4, 404–409 (1995).
[CrossRef]

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Bernage, P.

B. Leconte, W.-X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, and H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge:SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–3020 (1997).
[CrossRef]

B. Poumellec, I. Riant, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms: interferometric microscopy investigations,” Opt. Mater. 4, 404–409 (1995).
[CrossRef]

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Besley, J. A.

Bhatangar, R.

O. Prakash, S. K. Dixit, and R. Bhatangar, “On the role of coherence width and its evolution in a short pulse fundamental beam in second harmonic generation from beta barium borate,” IEEE J. Quantum Electron. 38, 603–613 (2002).
[CrossRef]

Brochu, G.

Canning, J.

J. Canning, “Photosensitization and photo-stabilization of laser-induced index changes in optical fibers,” Opt. Fiber Technol. 6, 275–289 (2000).
[CrossRef]

Chen, G.

G. Chen, Y. Li, L. Liu, Y. He, L. Xu, and W. Wang, “The photosensitivity and ultraviolet absorption change of Sn-doped silica film fabricated by modified chemical vapor deposition,” J. Appl. Phys. 96, 6153–6158 (2004).
[CrossRef]

Chojetzki, C.

Dawes, J. M.

A. Lee, M. J. Withford, and J. M. Dawes, “Investigation into the power-law dependence of fibre Bragg grating growth,” Opt. Commun. 257, 261–269 (2006).
[CrossRef]

Delevaque, E.

Dixit, S. K.

R. Mahakud, O. Prakash, S. K. Dixit, and J. K. Mittal, “Analysis on the laser beam pointing instability induced fringe shift and contrast dilution from different interferometers used for writing fiber Bragg grating,” Opt. Commun. 282, 2204–2211 (2009).
[CrossRef]

O. Prakash, R. Mahakud, H. S. Vora, and S. K. Dixit, “Cylindrical-lens-based wavefront-reversing shear interferometer for the spatial coherence measurement of UV radiations,” Opt. Eng. 45, 055601 (2006).
[CrossRef]

O. Prakash, R. Mahakud, S. K. Dixit, and U. Nundy, “Effect of the spatial coherence of ultraviolet radiation (255 nm) on the fabrication efficiency of phase mask based fiber Bragg gratings,” Opt. Commun. 263, 65–70 (2006).
[CrossRef]

O. Prakash, S. K. Dixit, and R. Bhatangar, “On the role of coherence width and its evolution in a short pulse fundamental beam in second harmonic generation from beta barium borate,” IEEE J. Quantum Electron. 38, 603–613 (2002).
[CrossRef]

Dong, L.

Douay, M.

B. Leconte, W.-X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, and H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge:SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–3020 (1997).
[CrossRef]

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Dyer, P. E.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

Farley, R. J.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

Friebele, E. J.

Georges, T.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Giedl, R.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

Gilbert, S. L.

Glenn, W. H.

Hand, D. P.

He, Y.

G. Chen, Y. Li, L. Liu, Y. He, L. Xu, and W. Wang, “The photosensitivity and ultraviolet absorption change of Sn-doped silica film fabricated by modified chemical vapor deposition,” J. Appl. Phys. 96, 6153–6158 (2004).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kristensen, M.

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

LaRochelle, S.

Latka, I.

Leconte, B.

Lee, A.

A. Lee, M. J. Withford, and J. M. Dawes, “Investigation into the power-law dependence of fibre Bragg grating growth,” Opt. Commun. 257, 261–269 (2006).
[CrossRef]

Legoubin, S.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

Li, Y.

G. Chen, Y. Li, L. Liu, Y. He, L. Xu, and W. Wang, “The photosensitivity and ultraviolet absorption change of Sn-doped silica film fabricated by modified chemical vapor deposition,” J. Appl. Phys. 96, 6153–6158 (2004).
[CrossRef]

Liu, L.

G. Chen, Y. Li, L. Liu, Y. He, L. Xu, and W. Wang, “The photosensitivity and ultraviolet absorption change of Sn-doped silica film fabricated by modified chemical vapor deposition,” J. Appl. Phys. 96, 6153–6158 (2004).
[CrossRef]

Mahakud, R.

R. Mahakud, O. Prakash, S. K. Dixit, and J. K. Mittal, “Analysis on the laser beam pointing instability induced fringe shift and contrast dilution from different interferometers used for writing fiber Bragg grating,” Opt. Commun. 282, 2204–2211 (2009).
[CrossRef]

O. Prakash, R. Mahakud, S. K. Dixit, and U. Nundy, “Effect of the spatial coherence of ultraviolet radiation (255 nm) on the fabrication efficiency of phase mask based fiber Bragg gratings,” Opt. Commun. 263, 65–70 (2006).
[CrossRef]

O. Prakash, R. Mahakud, H. S. Vora, and S. K. Dixit, “Cylindrical-lens-based wavefront-reversing shear interferometer for the spatial coherence measurement of UV radiations,” Opt. Eng. 45, 055601 (2006).
[CrossRef]

Meltz, G.

Mittal, J. K.

R. Mahakud, O. Prakash, S. K. Dixit, and J. K. Mittal, “Analysis on the laser beam pointing instability induced fringe shift and contrast dilution from different interferometers used for writing fiber Bragg grating,” Opt. Commun. 282, 2204–2211 (2009).
[CrossRef]

Monerie, M.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

Morey, W. W.

Murphy, C.

Niay, P.

B. Leconte, W.-X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, and H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge:SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–3020 (1997).
[CrossRef]

B. Poumellec, I. Riant, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms: interferometric microscopy investigations,” Opt. Mater. 4, 404–409 (1995).
[CrossRef]

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Nundy, U.

O. Prakash, R. Mahakud, S. K. Dixit, and U. Nundy, “Effect of the spatial coherence of ultraviolet radiation (255 nm) on the fabrication efficiency of phase mask based fiber Bragg gratings,” Opt. Commun. 263, 65–70 (2006).
[CrossRef]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Patrick, H.

Payne, D. N.

Poignant, H.

Poumellec, B.

B. Poumellec, I. Riant, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms: interferometric microscopy investigations,” Opt. Mater. 4, 404–409 (1995).
[CrossRef]

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

Prakash, O.

R. Mahakud, O. Prakash, S. K. Dixit, and J. K. Mittal, “Analysis on the laser beam pointing instability induced fringe shift and contrast dilution from different interferometers used for writing fiber Bragg grating,” Opt. Commun. 282, 2204–2211 (2009).
[CrossRef]

O. Prakash, R. Mahakud, S. K. Dixit, and U. Nundy, “Effect of the spatial coherence of ultraviolet radiation (255 nm) on the fabrication efficiency of phase mask based fiber Bragg gratings,” Opt. Commun. 263, 65–70 (2006).
[CrossRef]

O. Prakash, R. Mahakud, H. S. Vora, and S. K. Dixit, “Cylindrical-lens-based wavefront-reversing shear interferometer for the spatial coherence measurement of UV radiations,” Opt. Eng. 45, 055601 (2006).
[CrossRef]

O. Prakash, S. K. Dixit, and R. Bhatangar, “On the role of coherence width and its evolution in a short pulse fundamental beam in second harmonic generation from beta barium borate,” IEEE J. Quantum Electron. 38, 603–613 (2002).
[CrossRef]

Putnam, M. A.

Reekie, L.

Riant, I.

B. Poumellec, I. Riant, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms: interferometric microscopy investigations,” Opt. Mater. 4, 404–409 (1995).
[CrossRef]

Rothhardt, M.

Russell, P. St. J.

Schuster, K.

Tsai, T.-E.

Unger, S.

Vora, H. S.

O. Prakash, R. Mahakud, H. S. Vora, and S. K. Dixit, “Cylindrical-lens-based wavefront-reversing shear interferometer for the spatial coherence measurement of UV radiations,” Opt. Eng. 45, 055601 (2006).
[CrossRef]

Wang, T.

Wang, W.

G. Chen, Y. Li, L. Liu, Y. He, L. Xu, and W. Wang, “The photosensitivity and ultraviolet absorption change of Sn-doped silica film fabricated by modified chemical vapor deposition,” J. Appl. Phys. 96, 6153–6158 (2004).
[CrossRef]

Weeks, C.

Williams, G. M.

Withford, M. J.

A. Lee, M. J. Withford, and J. M. Dawes, “Investigation into the power-law dependence of fibre Bragg grating growth,” Opt. Commun. 257, 261–269 (2006).
[CrossRef]

Xie, W. X.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Xie, W.-X.

Xu, L.

G. Chen, Y. Li, L. Liu, Y. He, L. Xu, and W. Wang, “The photosensitivity and ultraviolet absorption change of Sn-doped silica film fabricated by modified chemical vapor deposition,” J. Appl. Phys. 96, 6153–6158 (2004).
[CrossRef]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

O. Prakash, S. K. Dixit, and R. Bhatangar, “On the role of coherence width and its evolution in a short pulse fundamental beam in second harmonic generation from beta barium borate,” IEEE J. Quantum Electron. 38, 603–613 (2002).
[CrossRef]

J. Appl. Phys. (1)

G. Chen, Y. Li, L. Liu, Y. He, L. Xu, and W. Wang, “The photosensitivity and ultraviolet absorption change of Sn-doped silica film fabricated by modified chemical vapor deposition,” J. Appl. Phys. 96, 6153–6158 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (6)

A. Lee, M. J. Withford, and J. M. Dawes, “Investigation into the power-law dependence of fibre Bragg grating growth,” Opt. Commun. 257, 261–269 (2006).
[CrossRef]

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

R. Mahakud, O. Prakash, S. K. Dixit, and J. K. Mittal, “Analysis on the laser beam pointing instability induced fringe shift and contrast dilution from different interferometers used for writing fiber Bragg grating,” Opt. Commun. 282, 2204–2211 (2009).
[CrossRef]

O. Prakash, R. Mahakud, S. K. Dixit, and U. Nundy, “Effect of the spatial coherence of ultraviolet radiation (255 nm) on the fabrication efficiency of phase mask based fiber Bragg gratings,” Opt. Commun. 263, 65–70 (2006).
[CrossRef]

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres,” Opt. Commun. 113, 176–192(1994).
[CrossRef]

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Opt. Eng. (1)

O. Prakash, R. Mahakud, H. S. Vora, and S. K. Dixit, “Cylindrical-lens-based wavefront-reversing shear interferometer for the spatial coherence measurement of UV radiations,” Opt. Eng. 45, 055601 (2006).
[CrossRef]

Opt. Fiber Technol. (1)

J. Canning, “Photosensitization and photo-stabilization of laser-induced index changes in optical fibers,” Opt. Fiber Technol. 6, 275–289 (2000).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. (1)

B. Poumellec, I. Riant, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms: interferometric microscopy investigations,” Opt. Mater. 4, 404–409 (1995).
[CrossRef]

Phys. Rev. B (1)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Other (1)

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Reversal shear interferograms and intensity profile of (a) UV1 and (b) UV2 beam.

Fig. 2.
Fig. 2.

Growth of (a) real-time transmission dip, (b) reflectivity, and (c) refractive index modulation of FBGs written by UV1 and UV2 beam with UV fluence.

Fig. 3.
Fig. 3.

Variation of normalized index change (δnn(z)) along the fiber axis at normalized UV fluence (Fn) of 0.1, 0.2, 0.5, 1, 1.5, 2, 2.5, and 3 for (a) γ=1 (b) γ=0.5.

Fig. 4.
Fig. 4.

Variation of (a) normalized index change at positions of fringe maxima (δnnmax) and fringe minima (δnnmin) for γ=1 and γ=0.5, (b) normalized average refractive index change (δnn) and refractive index modulation (δnnmod) for different value of γ, and (c) maximum FBG reflectivity with normalized UV fluence at different γ.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

δnmod=λBπηLtanh1R,
R=(110Td/10),
L=(W2xtanψ),
dNd(t)dt=jBj(ν)u(ν)ΔνNd(t)+AjNj,
dNd(t)dt=Bu(ν)ΔνNd(t)=BIcNd(t),
Nd(t)=Nd(0)exp(BItc)=Nd(0)exp(tτc),
ΔNd(t)=Nd(0)[1exp(tτc)].
δn(t)=CNd(0)[1exp(tτc)],
δn=δnj=CNd(0)[1exp(BINτc)]=Δnmax[1exp(BF/c)],
I(z)=Ir+2I1{1+γ1cos(2πΛz+φ(z))},
γ1=sinc(kxtanψΔϕ),
I(z)=I0(1+γcos2πΛz),
δn(z)Δnmax=[1exp[BF0c(1+γcos2πΛz)]=[1exp[Fn(1+γcos2πΛz)],
δnn(z)=Fn{1+γcos2πΛz}.
δnnmax=1exp{Fn(1+γ)}
δnnmin=1exp{Fn(1γ)}.
δnnac=eFnsinh(Fnγ).
δnn(z)=δnn+δnnmodcos(2πΛz)+δnn(2)cos(4πΛz)+,
δnn1eFn{1+14(Fnγ)2+164(Fnγ)4+1384(Fnγ)6+}
δnnmodeFn(Fnγ){1+18(Fnγ)2+172(Fnγ)4+19728(Fnγ)6+}.
I(z)=I0(z)[1+g(z)γ1cos(2πΛz)],
δn(z)Δnmax=[1exp[Fn(z)(1+γ(z)cos2πΛz)].

Metrics