Abstract

We present an analysis on the saturation of refractive index modulation of fiber Bragg gratings written in nonhydrogenated Ge-B co-doped single-mode photosensitive optical fiber by partially coherent pulsed UV beams. The UV beams of different spatial coherence properties were generated by second harmonic conversion of high repetition rate, high average power copper vapor laser (CVL) oscillators with different optical resonators. It is observed that for UV beams of higher spatial coherence, the fiber Bragg grating reflectivity growth was faster and saturation of refractive index modulation was higher. The experimental results are explained with the help of a physical model based on exponential decay of defect centers per unit volume on UV absorption in the fiber core. The subsequent increase in the refractive index was attributed to the structural modification and densification of the fiber core.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription