Abstract

In experimental optodigital encrypting architectures, the use of a reference wave is essential. In this contribution, we present an experimental alternative to avoid the reference wave during the encrypting procedure in a joint transform correlator architecture by introducing the concept of a master key. Besides, the master key represents an additional security element for the entire protocol. In our method, the master key is holographically processed and used during the encryption process with the encrypting key. We give the mathematical description for the process in case of a single input object and then we extend it to multiple input objects. We present the experimental demonstration of the proposed method including two examples where this technique is successfully applied for several input objects.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon 1, 589–636 (2009).
    [CrossRef]
  2. O. Matoba, T. Nomura, E. Pérez-Cabré, M. S. Millán, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
    [CrossRef]
  3. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293 (1999).
    [CrossRef]
  4. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000).
    [CrossRef]
  5. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
    [CrossRef]
  6. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006).
    [CrossRef]
  7. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109–112 (2006).
    [CrossRef]
  8. G. Situ and J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Opt. Lett. 30, 1306–1308 (2005).
    [CrossRef]
  9. T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39, 2031–2045 (2000).
    [CrossRef]
  10. E. Rueda, J. F. Barrera R., R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun. 282, 3243–3249 (2009).
    [CrossRef]
  11. E. Tajahuerce, O. Matoba, S. C. Verrall, and B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000).
    [CrossRef]
  12. C. La Mela and C. Iemmi, “Optical encryption using phase-shifting interferometry in a joint transform correlator,” Opt. Lett. 31, 2562–2564 (2006).
    [CrossRef]
  13. A. Nelleri, J. Joseph, and K. Singh, “Lensless complex data encoding for digital holographic whole information security,” Opt. Eng. 47, 115801 (2008).
    [CrossRef]
  14. E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture,” Opt. Eng. 48, 027006 (2009).
    [CrossRef]
  15. R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett. 35, 333–335 (2010).
    [CrossRef]
  16. C. L. Chen, L. C. Lin, and C. J. Cheng, “Design and implementation of an optical joint transform encryption system using complex-encoded key mask,” Opt. Eng. 47, 068201 (2008).
    [CrossRef]
  17. E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284, 2500–2504 (2011).
    [CrossRef]
  18. J. F. Barrera, E. Rueda, C. Ríos, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284, 4350–4355 (2011).
    [CrossRef]
  19. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
    [CrossRef]

2011 (2)

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284, 2500–2504 (2011).
[CrossRef]

J. F. Barrera, E. Rueda, C. Ríos, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284, 4350–4355 (2011).
[CrossRef]

2010 (1)

2009 (4)

E. Rueda, J. F. Barrera R., R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun. 282, 3243–3249 (2009).
[CrossRef]

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon 1, 589–636 (2009).
[CrossRef]

O. Matoba, T. Nomura, E. Pérez-Cabré, M. S. Millán, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture,” Opt. Eng. 48, 027006 (2009).
[CrossRef]

2008 (2)

A. Nelleri, J. Joseph, and K. Singh, “Lensless complex data encoding for digital holographic whole information security,” Opt. Eng. 47, 115801 (2008).
[CrossRef]

C. L. Chen, L. C. Lin, and C. J. Cheng, “Design and implementation of an optical joint transform encryption system using complex-encoded key mask,” Opt. Eng. 47, 068201 (2008).
[CrossRef]

2006 (3)

C. La Mela and C. Iemmi, “Optical encryption using phase-shifting interferometry in a joint transform correlator,” Opt. Lett. 31, 2562–2564 (2006).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109–112 (2006).
[CrossRef]

2005 (1)

2000 (3)

1999 (2)

1998 (1)

Alfalou, A.

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon 1, 589–636 (2009).
[CrossRef]

Barrera, J. F.

J. F. Barrera, E. Rueda, C. Ríos, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284, 4350–4355 (2011).
[CrossRef]

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284, 2500–2504 (2011).
[CrossRef]

R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett. 35, 333–335 (2010).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture,” Opt. Eng. 48, 027006 (2009).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109–112 (2006).
[CrossRef]

Barrera R., J. F.

E. Rueda, J. F. Barrera R., R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun. 282, 3243–3249 (2009).
[CrossRef]

Bolognini, N.

J. F. Barrera, E. Rueda, C. Ríos, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284, 4350–4355 (2011).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109–112 (2006).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006).
[CrossRef]

Brosseau, C.

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon 1, 589–636 (2009).
[CrossRef]

Chen, C. L.

C. L. Chen, L. C. Lin, and C. J. Cheng, “Design and implementation of an optical joint transform encryption system using complex-encoded key mask,” Opt. Eng. 47, 068201 (2008).
[CrossRef]

Cheng, C. J.

C. L. Chen, L. C. Lin, and C. J. Cheng, “Design and implementation of an optical joint transform encryption system using complex-encoded key mask,” Opt. Eng. 47, 068201 (2008).
[CrossRef]

Henao, R.

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284, 2500–2504 (2011).
[CrossRef]

R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett. 35, 333–335 (2010).
[CrossRef]

E. Rueda, J. F. Barrera R., R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun. 282, 3243–3249 (2009).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture,” Opt. Eng. 48, 027006 (2009).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109–112 (2006).
[CrossRef]

Iemmi, C.

Javidi, B.

Joseph, J.

Lin, L. C.

C. L. Chen, L. C. Lin, and C. J. Cheng, “Design and implementation of an optical joint transform encryption system using complex-encoded key mask,” Opt. Eng. 47, 068201 (2008).
[CrossRef]

Matoba, O.

Mela, C. La

Millán, M. S.

O. Matoba, T. Nomura, E. Pérez-Cabré, M. S. Millán, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

Nelleri, A.

A. Nelleri, J. Joseph, and K. Singh, “Lensless complex data encoding for digital holographic whole information security,” Opt. Eng. 47, 115801 (2008).
[CrossRef]

Nomura, T.

O. Matoba, T. Nomura, E. Pérez-Cabré, M. S. Millán, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39, 2031–2045 (2000).
[CrossRef]

Pérez-Cabré, E.

O. Matoba, T. Nomura, E. Pérez-Cabré, M. S. Millán, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

Ríos, C.

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284, 2500–2504 (2011).
[CrossRef]

J. F. Barrera, E. Rueda, C. Ríos, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284, 4350–4355 (2011).
[CrossRef]

Rueda, E.

J. F. Barrera, E. Rueda, C. Ríos, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284, 4350–4355 (2011).
[CrossRef]

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284, 2500–2504 (2011).
[CrossRef]

R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett. 35, 333–335 (2010).
[CrossRef]

E. Rueda, J. F. Barrera R., R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun. 282, 3243–3249 (2009).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture,” Opt. Eng. 48, 027006 (2009).
[CrossRef]

Singh, K.

Situ, G.

Tajahuerce, E.

Tebaldi, M.

J. F. Barrera, E. Rueda, C. Ríos, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284, 4350–4355 (2011).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109–112 (2006).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006).
[CrossRef]

Torroba, R.

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284, 2500–2504 (2011).
[CrossRef]

J. F. Barrera, E. Rueda, C. Ríos, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284, 4350–4355 (2011).
[CrossRef]

R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, “Noise-free recovery of optodigital encrypted and multiplexed images,” Opt. Lett. 35, 333–335 (2010).
[CrossRef]

E. Rueda, J. F. Barrera R., R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun. 282, 3243–3249 (2009).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture,” Opt. Eng. 48, 027006 (2009).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109–112 (2006).
[CrossRef]

Unnikrishnan, G.

Verrall, S. C.

Zhang, J.

Adv. Opt. Photon (1)

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon 1, 589–636 (2009).
[CrossRef]

Appl. Opt. (3)

Opt. Commun. (5)

E. Rueda, C. Ríos, J. F. Barrera, R. Henao, and R. Torroba, “Experimental multiplexing approach via code key rotations under a joint transform correlator scheme,” Opt. Commun. 284, 2500–2504 (2011).
[CrossRef]

J. F. Barrera, E. Rueda, C. Ríos, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284, 4350–4355 (2011).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006).
[CrossRef]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260, 109–112 (2006).
[CrossRef]

E. Rueda, J. F. Barrera R., R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun. 282, 3243–3249 (2009).
[CrossRef]

Opt. Eng. (4)

T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39, 2031–2045 (2000).
[CrossRef]

C. L. Chen, L. C. Lin, and C. J. Cheng, “Design and implementation of an optical joint transform encryption system using complex-encoded key mask,” Opt. Eng. 47, 068201 (2008).
[CrossRef]

A. Nelleri, J. Joseph, and K. Singh, “Lensless complex data encoding for digital holographic whole information security,” Opt. Eng. 47, 115801 (2008).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture,” Opt. Eng. 48, 027006 (2009).
[CrossRef]

Opt. Lett. (5)

Proc. IEEE (1)

O. Matoba, T. Nomura, E. Pérez-Cabré, M. S. Millán, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup to store holographically the FT of the master key: O: input plane; B: beam splitter; M: mirror; diffuser: ground glass; master key: random phase mask; L: lens; fL: focal length of L; K: output plane where the CCD camera is placed.

Fig. 2.
Fig. 2.

Experimental arrangement to encrypt the input object. Object path of the Mach–Zehnder interferometer.

Fig. 3.
Fig. 3.

Images (a) and (b) represent the input objects. Experimental results: (c) and (d) are the right decrypted images of (a) and (b) employing the same master key and their respective encoding keys. By contrast, (e) is the wrong decrypted output using the incorrect encoding key but the right master key of (a), while (f) is the wrong decrypted output using the correct encoding key but the wrong master key of (b).

Fig. 4.
Fig. 4.

Multiplexed encrypted objects. Line (a) corresponds to the original objects and line (b) corresponds to the decrypted objects.

Fig. 5.
Fig. 5.

Improving decrypted image quality using the subsampling technique. (a) Sample, (b) right experimental decryption using the entire sample without the subsampling protocol, (c) sample divided into four subsamples, and (d) decrypted image employing the subsampling technique.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

IMK(u,v)=|P(u,v)|2+P*(u,v)MK(u,v)exp(i2πua)+P(u,v)MK*(u,v)exp(i2πua)+|MK(u,v)|2,
iMK(x,y)=mk(x,y)δ(x2a,y)+mk*(x,y)δ(x+2a,y),
IMK(u,v)=MK(u,v).
e(x,y)=f(x,y)δ(x+a,y)+k(x,y)δ(xa,y),
E(u,v)=|K(u,v)|2+F*(u,v)K(u,v)exp(i4πua)+F(u,v)K*(u,v)exp(i4πua)+|F(u,v)|2,
E(u,v)=F(u,v)K*(u,v).
G(u,v)=MK*(u,v)K(u,v).
d(x,y)=f(x,y)[k*(x,y)k(x,y)][mk*(x,y)mk(x,y)].
d(x,y)=f(x,y).
En(u,v)=|Kn(u,v)|2+Fn*(u,v)Kn(u,v)exp(i4πua)+Fn(u,v)Kn*(u,v)exp(i4πua)+|Fn(u,v)|2
en(x,y)=fn*(x,y)kn(x,y)δ(x+2a,y)+fn(x,y)kn*(x,y)δ(x2a,y),
en(x,y)=fn(x,y)kn*(x,y)δ(xxn,yyn).
En(u,v)=Fn(u,v)Kn*(u,v)exp[i2π(xnu+ynv)].
M(u,v)=n=1NFn(u,v)Kn*(u,v)exp[i2π(xnu+ynv)].
Gn(u,v)=MK*(u,v)Kn(u,v).
dl(x,y)=fl(x,y)[kl*(x,y)kl(x,y)][mk*(x,y)mk(x,y)]δ(xxl,yyl),
dl(x,y)=fl(x,y)δ(xxl,yyl).
M(u,v)=n=1NFn(u,v)K*(u,v)exp[i2π(xnu+ynv)].
d(x,y)=n=1Nfn(x,y)δ(xxn,yyn).

Metrics