Abstract

We propose and implement a common external cavity to narrow spectral linewidth of two broad-area laser diode arrays (LDAs) and align their center wavelengths. The locked center wavelength of two LDAs can be tuned in the range of 10nm by tuning the tilted angle of the diffraction grating. The output beams of two LDAs are spatially overlapped through the polarization beam splitter of the common external cavity, and the total output power equals the power of two LDAs. The center wavelength of each LDA can be independently tuned by shifting the corresponding fast-axis collimation lens. As a result, the high-power two-color LDA operation is demonstrated with the tunable wavelength difference of up to 2 nm (1THz).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997).
    [CrossRef]
  2. W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
    [CrossRef]
  3. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21, 2151–2163 (2004).
    [CrossRef]
  4. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167–2169 (2007).
    [CrossRef]
  5. A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702–704 (2008).
    [CrossRef]
  6. G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007).
    [CrossRef]
  7. L. S. Meng, B. Nizamov, P. Madasamy, J. K. Brasseur, T. Henshaw, and D. K. Neuman, “High power 7 GHz bandwidth laser array and its use in optically pump singlet delta oxygen,” Opt. Express 14, 10469–10474 (2006).
    [CrossRef]
  8. B. Chann, I. Nelson, and T. G. Walker, “Frequency-narrowed external-cavity diode-laser-array bar,” Opt. Lett. 25, 1352–1354 (2000).
    [CrossRef]
  9. C. L. Talbot, M. E. J. Frese, D. Eang, I. Brereton, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Linewidth reduction in a large-smile laser diode array,” Appl. Opt. 44, 6264–6268 (2005).
    [CrossRef]
  10. J. T. Gopinath, B. Chann, T. Y. Fan, and A. Sanchez-Rubio, “1450 nm high-brightness wavelength-beam combined diode laser array,” Opt. Express 16, 9405–9410 (2008).
    [CrossRef]
  11. B. Liu, Y. Liu, and Y. Braiman, “Line-width reduction of a broad-area laser diode array in a compound external cavity,” Appl. Opt. 48, 365–370 (2009).
    [CrossRef]
  12. J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178–8183 (2006).
    [CrossRef]
  13. D. Vijayakumar, O. B. Jensen, J. Barrientos-Barria, D. Paboeuf, G. Lucas-Leclin, B. Thestrup, and P. M. Petersen, “Narrow line width operation of a 980 nm gain guided tapered diode laser bar,” Opt. Express 19, 1131–1137 (2011).
    [CrossRef]
  14. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33, 414–416 (2008).
    [CrossRef]
  15. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17, 14767–14770 (2009).
    [CrossRef]
  16. A. Podvyaznyy, G. Venus, V. Smirnov, D. Hostutler, and L. Glebov, “250 W LD bar pump source with 10 GHz spectral width for rubidium vapor medium,” Proc. SPIE 7686, 76860P (2010).
    [CrossRef]
  17. C. L. Wang and C. L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
    [CrossRef]
  18. C. L. Wang and C. L. Pan, “Tunable multi terahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
    [CrossRef]
  19. E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
    [CrossRef]
  20. K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. MacMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844–3846 (1995).
    [CrossRef]
  21. T. Hidaka, M. Tani, S. Matsuura, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33, 2039–2040 (1997).
    [CrossRef]
  22. M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
    [CrossRef]
  23. S. Hoffman, M. Hofmann, M. Kira, and S. E. Koch, “Two-color diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
    [CrossRef]
  24. K. Shibuya, M. Tani, M. Hangyo, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90, 161127 (2007).
    [CrossRef]
  25. S. A. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21, 1093–1095 (2009).
    [CrossRef]
  26. M. Chi, O. B. Jensen, and P. M. Petersen, “High-power dual-wavelength external-cavity diode laser based on tapered amplifier with tunable terahertz frequency difference,” Opt. Lett. 36, 2626–2628 (2011).
    [CrossRef]
  27. B. Liu, Y. Liu, and Y. Braiman, “Coherent addition of high power laser diode array with a V-shape external Talbot cavity,” Opt. Express 16, 20935–20942 (2008).
    [CrossRef]
  28. B. Liu, Y. Liu, and Y. Braiman, “Coherent beam combining of high power broad-area laser diode array with a closed V-shape external Talbot cavity,” Opt. Express 18, 7361–7368 (2010).
    [CrossRef]
  29. H. Okamura, “Shift lens external-cavity diode laser for broad wavelength tuning and switching,” Opt. Lett. 35, 1175–1177 (2010).
    [CrossRef]

2011

2010

2009

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

S. A. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21, 1093–1095 (2009).
[CrossRef]

B. Liu, Y. Liu, and Y. Braiman, “Line-width reduction of a broad-area laser diode array in a compound external cavity,” Appl. Opt. 48, 365–370 (2009).
[CrossRef]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17, 14767–14770 (2009).
[CrossRef]

2008

2007

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167–2169 (2007).
[CrossRef]

K. Shibuya, M. Tani, M. Hangyo, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90, 161127 (2007).
[CrossRef]

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007).
[CrossRef]

2006

2005

C. L. Talbot, M. E. J. Frese, D. Eang, I. Brereton, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Linewidth reduction in a large-smile laser diode array,” Appl. Opt. 44, 6264–6268 (2005).
[CrossRef]

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[CrossRef]

S. Hoffman, M. Hofmann, M. Kira, and S. E. Koch, “Two-color diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[CrossRef]

2004

2000

1997

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997).
[CrossRef]

T. Hidaka, M. Tani, S. Matsuura, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33, 2039–2040 (1997).
[CrossRef]

1995

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. MacMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844–3846 (1995).
[CrossRef]

C. L. Wang and C. L. Pan, “Tunable multi terahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
[CrossRef]

1994

C. L. Wang and C. L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[CrossRef]

Baker, H. J.

Barrientos-Barria, J.

Beach, R. J.

Boyadjian, G.

Braiman, Y.

Brasseur, J. K.

Brereton, I.

Brown, E. R.

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. MacMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844–3846 (1995).
[CrossRef]

Chann, B.

Chi, M.

Dadras, J.

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

Dennis, C. L.

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

DiNatale, W. F.

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. MacMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844–3846 (1995).
[CrossRef]

Dubinskii, M. A.

Eang, D.

Fan, T. Y.

Fleenor, M.

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

Frese, M. E. J.

Glebov, L.

A. Podvyaznyy, G. Venus, V. Smirnov, D. Hostutler, and L. Glebov, “250 W LD bar pump source with 10 GHz spectral width for rubidium vapor medium,” Proc. SPIE 7686, 76860P (2010).
[CrossRef]

A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702–704 (2008).
[CrossRef]

Glebov, L. B.

S. A. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21, 1093–1095 (2009).
[CrossRef]

Gopinath, J. T.

Gourevitch, A.

Hagen, M.

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

Hall, D. R.

Hangyo, M.

K. Shibuya, M. Tani, M. Hangyo, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90, 161127 (2007).
[CrossRef]

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[CrossRef]

Happer, W.

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997).
[CrossRef]

Havermeyer, F.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007).
[CrossRef]

Heckenberg, N. R.

Henshaw, T.

Hidaka, T.

T. Hidaka, M. Tani, S. Matsuura, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33, 2039–2040 (1997).
[CrossRef]

Hoffman, S.

S. Hoffman, M. Hofmann, M. Kira, and S. E. Koch, “Two-color diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[CrossRef]

Hofmann, M.

S. Hoffman, M. Hofmann, M. Kira, and S. E. Koch, “Two-color diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[CrossRef]

Hostutler, D.

A. Podvyaznyy, G. Venus, V. Smirnov, D. Hostutler, and L. Glebov, “250 W LD bar pump source with 10 GHz spectral width for rubidium vapor medium,” Proc. SPIE 7686, 76860P (2010).
[CrossRef]

Hostutler, D. A.

Ismaili, A.

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

Jensen, O. B.

Kan, H.

K. Shibuya, M. Tani, M. Hangyo, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90, 161127 (2007).
[CrossRef]

Kanz, V. K.

Kira, M.

S. Hoffman, M. Hofmann, M. Kira, and S. E. Koch, “Two-color diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[CrossRef]

Knize, R. J.

Koch, S. E.

S. Hoffman, M. Hofmann, M. Kira, and S. E. Koch, “Two-color diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[CrossRef]

Krupke, W. F.

Lee, W. T.

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

Liu, B.

Liu, W.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007).
[CrossRef]

Liu, Y.

Lucas-Leclin, G.

Lyszczarz, T. M.

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. MacMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844–3846 (1995).
[CrossRef]

MacMahon, O. B.

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. MacMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844–3846 (1995).
[CrossRef]

Madasamy, P.

Matsuura, S.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[CrossRef]

T. Hidaka, M. Tani, S. Matsuura, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33, 2039–2040 (1997).
[CrossRef]

Mclntosh, K. A.

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. MacMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844–3846 (1995).
[CrossRef]

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Meng, L. S.

Merkle, L. D.

Monjardin, J. F.

Morikawa, O.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[CrossRef]

Moser, C.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007).
[CrossRef]

Nelson, I.

Neuman, D. K.

Nichols, K. B.

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. MacMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844–3846 (1995).
[CrossRef]

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Nizamov, B.

Nowak, K. M.

Okamura, H.

Paboeuf, D.

Pan, C. L.

C. L. Wang and C. L. Pan, “Tunable multi terahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
[CrossRef]

C. L. Wang and C. L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[CrossRef]

Payne, S. A.

Petersen, P. M.

Pierce, J.

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

Platz, R.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007).
[CrossRef]

Podvyaznyy, A.

A. Podvyaznyy, G. Venus, V. Smirnov, D. Hostutler, and L. Glebov, “250 W LD bar pump source with 10 GHz spectral width for rubidium vapor medium,” Proc. SPIE 7686, 76860P (2010).
[CrossRef]

Rafailov, E. U.

S. A. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21, 1093–1095 (2009).
[CrossRef]

Rich, D.

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

Robertson, J. L.

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

Rubinsztein-Dunlop, H.

Sakai, K.

T. Hidaka, M. Tani, S. Matsuura, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33, 2039–2040 (1997).
[CrossRef]

Sanchez-Rubio, A.

Schroeder, D.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007).
[CrossRef]

Shaffer, M. K.

Shibuya, K.

K. Shibuya, M. Tani, M. Hangyo, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90, 161127 (2007).
[CrossRef]

Smirnov, V.

A. Podvyaznyy, G. Venus, V. Smirnov, D. Hostutler, and L. Glebov, “250 W LD bar pump source with 10 GHz spectral width for rubidium vapor medium,” Proc. SPIE 7686, 76860P (2010).
[CrossRef]

A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702–704 (2008).
[CrossRef]

Smirnov, V. I.

S. A. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21, 1093–1095 (2009).
[CrossRef]

Steckman, G. J.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007).
[CrossRef]

Stooke, A.

Talbot, C. L.

Tani, M.

K. Shibuya, M. Tani, M. Hangyo, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90, 161127 (2007).
[CrossRef]

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[CrossRef]

T. Hidaka, M. Tani, S. Matsuura, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33, 2039–2040 (1997).
[CrossRef]

Thestrup, B.

Tong, X.

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

Venus, G.

A. Podvyaznyy, G. Venus, V. Smirnov, D. Hostutler, and L. Glebov, “250 W LD bar pump source with 10 GHz spectral width for rubidium vapor medium,” Proc. SPIE 7686, 76860P (2010).
[CrossRef]

A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702–704 (2008).
[CrossRef]

Venus, G. B.

S. A. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21, 1093–1095 (2009).
[CrossRef]

Vijayakumar, D.

Voci, A.

Walker, T. G.

B. Chann, I. Nelson, and T. G. Walker, “Frequency-narrowed external-cavity diode-laser-array bar,” Opt. Lett. 25, 1352–1354 (2000).
[CrossRef]

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997).
[CrossRef]

Wang, C. L.

C. L. Wang and C. L. Pan, “Tunable multi terahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
[CrossRef]

C. L. Wang and C. L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[CrossRef]

Zhdanov, B.

Zhdanov, B. V.

Zolotovskaya, S. A.

S. A. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21, 1093–1095 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Shibuya, M. Tani, M. Hangyo, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90, 161127 (2007).
[CrossRef]

C. L. Wang and C. L. Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[CrossRef]

E. R. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. MacMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844–3846 (1995).
[CrossRef]

Electron. Lett.

T. Hidaka, M. Tani, S. Matsuura, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33, 2039–2040 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672–678 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

S. A. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21, 1093–1095 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Physica B

W. T. Lee, X. Tong, D. Rich, Y. Liu, M. Fleenor, A. Ismaili, J. Pierce, M. Hagen, J. Dadras, and J. L. Robertson, “Increasing the pump-up rate to polarize He3 gas using spin-exchange optical pumping method,” Physica B 404, 2670–2672(2009).
[CrossRef]

Proc. SPIE

A. Podvyaznyy, G. Venus, V. Smirnov, D. Hostutler, and L. Glebov, “250 W LD bar pump source with 10 GHz spectral width for rubidium vapor medium,” Proc. SPIE 7686, 76860P (2010).
[CrossRef]

Rev. Mod. Phys.

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997).
[CrossRef]

Semicond. Sci. Technol.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20, S151–S163 (2005).
[CrossRef]

S. Hoffman, M. Hofmann, M. Kira, and S. E. Koch, “Two-color diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20, S205–S210 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup for two laser diode arrays. One common external-cavity design of two broad-area LDAs is shown in the top view (slow axis). LDA1 and LDA2, broad-area LDAs; CL1—CL5, cylindrical lenses; HWP, half-wave plate; PBS, polarization beam splitter; FAC lens1 and FAC lens2, fast-axis collimation lenses for LDA1 and LDA2, respectively. CL1 and CL3 are a confocal lens pair to project the image of laser diodes on grating. FAC lens1, CL2 and FAC lens 2, CL2 are two lens pairs to form a telescope and collimate the laser beam along the fast axis.

Fig. 2.
Fig. 2.

Near-field images of LDAs are shown: (a) LDA1, (b) LDA2, and (c)  LDA 1 + LDA 2 . Only 35 of a total of 49 laser diode images are shown due to the limitation of our CCD camera effective exposure area.

Fig. 3.
Fig. 3.

Spectra of the LDAs are aligned when near-field images are spatially overlapped together. (a) Spectrum of the entire LDA1 [ Δ λ ( FWHM ) = 0.1 nm ]; (b) spectrum of the entire LDA2 [ Δ λ ( FWHM ) = 0.1 nm ]; (c) spectra of both LDA1 and LDA2 [ Δ λ ( FWHM ) = 0.11 nm ]; (d) spectra of both LDA1 and LDA2 (numerical adding) [ Δ λ ( FWHM ) = 0.1 nm ]. In order to discern the differences of spectra, each spectrum of LDA is artificially shifted by 20 dB.

Fig. 4.
Fig. 4.

Far-field pattern of two LDAs. The far-field angle (FWHM) is around 24 mrads.

Fig. 5.
Fig. 5.

Output power versus current for (a) LDA1, (b) LDA2, and (c)  LDA 1 + LDA 2 in external cavity with locked center wavelength around 763 nm.

Fig. 6.
Fig. 6.

Locked center wavelength of two LDAs shows the tunability in the range of 10 nm . Spectral lines consist of the spectra of all the lasers in the array.

Fig. 7.
Fig. 7.

Wavelength tunability and output power variation due to FAC lens shifting along the vertical direction. (a) Spectrum of the entire LDA1 showing wavelength tunability; (b) output power variation of the LDA1 due to wavelength tuning by shifting the FAC lens.

Fig. 8.
Fig. 8.

Spectra of two LDAs showing wavelength difference of the two-color output of LDAs biased at 24A and 29A, respectively. We fix the wavelength of LDA2 and tune the LDA1 wavelength by shifting FAC lens 1 along the vertical direction. The wavelength differences between LDA2 and LDA1 are (a) 2.0 nm; (b) 1.0 nm; (c) 0.0 nm; (d)  1.0 nm ; (e)  2.0 nm .

Fig. 9.
Fig. 9.

Diagram of light propagation along the fast-axis direction.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δ λ ( λ · cot θ f FAC ) ( d 1 f 2 f FAC f 2 ) δ x 1 ,
δ λ ( nm ) = 7.63 * 10 7 * cot ( 18.46 ° ) 275 200 200 ( 1 1.3 * 10 3 1 ) δ x 1 0.65 × δ x 1 ( μm ) .
[ x θ ] = ( 1 d 2 0 1 ) ( 1 0 1 f 1 ) ( 1 d 1 0 1 ) ( 1 0 1 f FAC 1 ) ( 1 d 0 0 1 ) [ x 1 θ 1 ] ,
θ = ( d 1 f f FAC f FAC f ) x 1 + ( 1 d 0 f FAC d 0 f d 1 f + d 1 d 0 f FAC f ) θ 1 .
δ θ = ( d 1 f f FAC f FAC f ) δ x 1 + ( 1 d 0 f FAC d 0 f d 1 f + d 1 d 0 f FAC f ) δ ( arctan ( x 1 d 0 ) ) ,
δ θ δ x 1 M f FAC d 0 2 ( d 0 2 + x 1 2 ) f δ x 1 ,
δ θ δ x 1 M f FAC .
δ λ = 2 d cos θ δ θ = 2 d sin θ ( cos θ / sin θ ) δ θ = λ cot θ δ θ ,
δ λ = λ cot θ × δ θ = λ cot θ δ x 1 M f FAC .

Metrics