Abstract

In recent years, optical zoom functionality in mobile devices has been studied. Traditional zoom systems use motors to change separation of lenses to achieve the zoom function, but these systems result in long total length and high power consumption, which are not suitable for mobile devices. Adopting micromachined polymer deformable mirrors in zoom systems has the potential to reduce thickness and chromatic aberration. In this paper, we propose a 2× continuous optical zoom system with five-megapixel image sensors by using two deformable mirrors. In our design, the thickness of the zoom system is about 11 mm. The effective focal length ranges from 4.7 mm at a field angle of 52° to 9.4 mm. The f-number is 4.4 and 6.4 at the wide-angle and telephoto end, respectively.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  2. F. Wippermann, P. Schreiber, A. Brauer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE6501, 650109 (2007).
    [CrossRef]
  3. S. Kuiper, B. H. W. Hendriks, J. F. Suijver, S. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses,” Proc. SPIE 6466, 64660F (2007).
    [CrossRef]
  4. B. Berge, “No moving parts, liquid lens capability realization soon for mass production,” Nikkei Electron. 911, 129–134 (2005).
  5. H. T. Hsieh, H. C. Wei, M. H. Lin, W. Y. Hsu, Y. C. Cheng, and G. D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18, 11097–11104 (2010).
    [CrossRef]
  6. K. Seidl, J. Knobbe, and H. Gruger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48, 4097–4107 (2009).
    [CrossRef]
  7. K. Seidl, J. Knobbe, D. Schneider, and H. Lakner, “Distortion correction of all-reflective unobscured optical-power zoom objective,” Appl. Opt. 49, 2712–2719 (2010).
    [CrossRef]
  8. K. P. Thompson, “Practical methods for the optical design of systems without symmetry,” Proc. SPIE 2774, 2–12 (1996).
    [CrossRef]
  9. J. R. Rogers, “Techniques and tools for obtaining symmetrical performance from tilted-component systems,” Opt. Eng. 39, 1776–1787 (2000).
    [CrossRef]
  10. K. Garrard, T. Bruegge, J. Hoffman, T. Dow, and A. Sohn, “Design tools for freeform optics,” Proc. SPIE 5874, 58740A (2005).
    [CrossRef]
  11. Po. Lin, H. Hsieh, and G. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
    [CrossRef]
  12. K. Kim and M. Shahinpoor, “A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles,” Polymer 43, 797–802 (2002).
    [CrossRef]
  13. G. Feng and J. Tsai, “Investigation of electrical to mechanical energy conversion of a three-dimensional four-electrode multidirectional-controllable IPMC transducer with/without an optical fiber enclosed,” Smart Mater. Struct. 20, 015027 (2011).
    [CrossRef]
  14. S. Nemat-Nasser and J. Li, “Electromechanical response of ionic polymer-metal composites,” J. Appl. Phys. 87, 3321–3331(2000).
    [CrossRef]

2011

Po. Lin, H. Hsieh, and G. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
[CrossRef]

G. Feng and J. Tsai, “Investigation of electrical to mechanical energy conversion of a three-dimensional four-electrode multidirectional-controllable IPMC transducer with/without an optical fiber enclosed,” Smart Mater. Struct. 20, 015027 (2011).
[CrossRef]

2010

2009

2007

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, S. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses,” Proc. SPIE 6466, 64660F (2007).
[CrossRef]

2005

B. Berge, “No moving parts, liquid lens capability realization soon for mass production,” Nikkei Electron. 911, 129–134 (2005).

K. Garrard, T. Bruegge, J. Hoffman, T. Dow, and A. Sohn, “Design tools for freeform optics,” Proc. SPIE 5874, 58740A (2005).
[CrossRef]

2004

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

2002

K. Kim and M. Shahinpoor, “A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles,” Polymer 43, 797–802 (2002).
[CrossRef]

2000

S. Nemat-Nasser and J. Li, “Electromechanical response of ionic polymer-metal composites,” J. Appl. Phys. 87, 3321–3331(2000).
[CrossRef]

J. R. Rogers, “Techniques and tools for obtaining symmetrical performance from tilted-component systems,” Opt. Eng. 39, 1776–1787 (2000).
[CrossRef]

1996

K. P. Thompson, “Practical methods for the optical design of systems without symmetry,” Proc. SPIE 2774, 2–12 (1996).
[CrossRef]

Berge, B.

B. Berge, “No moving parts, liquid lens capability realization soon for mass production,” Nikkei Electron. 911, 129–134 (2005).

Brauer, A.

F. Wippermann, P. Schreiber, A. Brauer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE6501, 650109 (2007).
[CrossRef]

Bruegge, T.

K. Garrard, T. Bruegge, J. Hoffman, T. Dow, and A. Sohn, “Design tools for freeform optics,” Proc. SPIE 5874, 58740A (2005).
[CrossRef]

Cheng, Y. C.

Craen, P.

F. Wippermann, P. Schreiber, A. Brauer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE6501, 650109 (2007).
[CrossRef]

Deladi, S.

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, S. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses,” Proc. SPIE 6466, 64660F (2007).
[CrossRef]

Dow, T.

K. Garrard, T. Bruegge, J. Hoffman, T. Dow, and A. Sohn, “Design tools for freeform optics,” Proc. SPIE 5874, 58740A (2005).
[CrossRef]

Feng, G.

G. Feng and J. Tsai, “Investigation of electrical to mechanical energy conversion of a three-dimensional four-electrode multidirectional-controllable IPMC transducer with/without an optical fiber enclosed,” Smart Mater. Struct. 20, 015027 (2011).
[CrossRef]

Garrard, K.

K. Garrard, T. Bruegge, J. Hoffman, T. Dow, and A. Sohn, “Design tools for freeform optics,” Proc. SPIE 5874, 58740A (2005).
[CrossRef]

Gruger, H.

Helwegen, I.

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, S. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses,” Proc. SPIE 6466, 64660F (2007).
[CrossRef]

Hendriks, B.

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, S. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses,” Proc. SPIE 6466, 64660F (2007).
[CrossRef]

Hoffman, J.

K. Garrard, T. Bruegge, J. Hoffman, T. Dow, and A. Sohn, “Design tools for freeform optics,” Proc. SPIE 5874, 58740A (2005).
[CrossRef]

Hsieh, H.

Po. Lin, H. Hsieh, and G. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
[CrossRef]

Hsieh, H. T.

Hsu, W. Y.

Kim, K.

K. Kim and M. Shahinpoor, “A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles,” Polymer 43, 797–802 (2002).
[CrossRef]

Knobbe, J.

Kuiper, S.

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, S. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses,” Proc. SPIE 6466, 64660F (2007).
[CrossRef]

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Lakner, H.

Li, J.

S. Nemat-Nasser and J. Li, “Electromechanical response of ionic polymer-metal composites,” J. Appl. Phys. 87, 3321–3331(2000).
[CrossRef]

Lin, M. H.

Lin, Po.

Po. Lin, H. Hsieh, and G. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
[CrossRef]

Nemat-Nasser, S.

S. Nemat-Nasser and J. Li, “Electromechanical response of ionic polymer-metal composites,” J. Appl. Phys. 87, 3321–3331(2000).
[CrossRef]

Rogers, J. R.

J. R. Rogers, “Techniques and tools for obtaining symmetrical performance from tilted-component systems,” Opt. Eng. 39, 1776–1787 (2000).
[CrossRef]

Schneider, D.

Schreiber, P.

F. Wippermann, P. Schreiber, A. Brauer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE6501, 650109 (2007).
[CrossRef]

Seidl, K.

Shahinpoor, M.

K. Kim and M. Shahinpoor, “A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles,” Polymer 43, 797–802 (2002).
[CrossRef]

Sohn, A.

K. Garrard, T. Bruegge, J. Hoffman, T. Dow, and A. Sohn, “Design tools for freeform optics,” Proc. SPIE 5874, 58740A (2005).
[CrossRef]

Su, G.

Po. Lin, H. Hsieh, and G. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
[CrossRef]

Su, G. D. J.

Suijver, J. F.

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, S. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses,” Proc. SPIE 6466, 64660F (2007).
[CrossRef]

Thompson, K. P.

K. P. Thompson, “Practical methods for the optical design of systems without symmetry,” Proc. SPIE 2774, 2–12 (1996).
[CrossRef]

Tsai, J.

G. Feng and J. Tsai, “Investigation of electrical to mechanical energy conversion of a three-dimensional four-electrode multidirectional-controllable IPMC transducer with/without an optical fiber enclosed,” Smart Mater. Struct. 20, 015027 (2011).
[CrossRef]

Wei, H. C.

Wippermann, F.

F. Wippermann, P. Schreiber, A. Brauer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE6501, 650109 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

J. Appl. Phys.

S. Nemat-Nasser and J. Li, “Electromechanical response of ionic polymer-metal composites,” J. Appl. Phys. 87, 3321–3331(2000).
[CrossRef]

J. Opt.

Po. Lin, H. Hsieh, and G. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
[CrossRef]

Nikkei Electron.

B. Berge, “No moving parts, liquid lens capability realization soon for mass production,” Nikkei Electron. 911, 129–134 (2005).

Opt. Eng.

J. R. Rogers, “Techniques and tools for obtaining symmetrical performance from tilted-component systems,” Opt. Eng. 39, 1776–1787 (2000).
[CrossRef]

Opt. Express

Polymer

K. Kim and M. Shahinpoor, “A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles,” Polymer 43, 797–802 (2002).
[CrossRef]

Proc. SPIE

K. Garrard, T. Bruegge, J. Hoffman, T. Dow, and A. Sohn, “Design tools for freeform optics,” Proc. SPIE 5874, 58740A (2005).
[CrossRef]

K. P. Thompson, “Practical methods for the optical design of systems without symmetry,” Proc. SPIE 2774, 2–12 (1996).
[CrossRef]

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, S. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses,” Proc. SPIE 6466, 64660F (2007).
[CrossRef]

Smart Mater. Struct.

G. Feng and J. Tsai, “Investigation of electrical to mechanical energy conversion of a three-dimensional four-electrode multidirectional-controllable IPMC transducer with/without an optical fiber enclosed,” Smart Mater. Struct. 20, 015027 (2011).
[CrossRef]

Other

F. Wippermann, P. Schreiber, A. Brauer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE6501, 650109 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Structure of MEMS DM and tuning focal length. (a) Without electrostatic force. (b) With electrostatic force.

Fig. 2.
Fig. 2.

Three-element optical system.

Fig. 3.
Fig. 3.

Zoom system of the NPNP type.

Fig. 4.
Fig. 4.

EFL of zoom system is 5 to 10 mm, the back focal length is 8 mm, and the largest optical power changeable ability of a DM is 40 diopters. The distance between the first lens and first DM set to 4 mm, the distance between the second lens and first DM set to 3 mm, and the distance between the first lens and second DM set to 3 mm. (a) NPP type. (b) NPNP type.

Fig. 5.
Fig. 5.

Relation of the length of the system and the largest diopter of single element. L is total length of the thin lens system, and d denotes to the distance between two deformable mirrors. This simulation is based on the effective focal length of zoom system from 4.5 to 9 mm.

Fig. 6.
Fig. 6.

Current zoom system design. (a) Zoom system in tele-angle. The DMs are all flat. The effective focal length is 9 mm, and the FOV is about 27.2°. (b) Zoom system in wide-angle. The first DM actuated to convex and the second DM actuated to concave. The effective focal length is 4.5 mm, and the field of view is about 52°.

Fig. 7.
Fig. 7.

Picture on the right shows the grid distortion when the DM is spherical. The distortion can be viewed as keystone distortion and amorphous distortion. The picture on the left shows the grid distortion when the DM is biconic and that it can control the amorphous distortion.

Fig. 8.
Fig. 8.

Shape of biconic Zernike DM used in our zoom design. (a) Side view of the first freeform MEMS DM. (b) Top view of the second freeform MEMS DM. (c) Side view of the first freeform MEMS DM. (d) Top view of the second freeform MEMS DM.

Fig. 9.
Fig. 9.

MTF performance of the current zoom system. (a) MTF performance when the zoom system is in tele-angle. (b) MTF performance when the zoom system is in wide-angle.

Fig. 10.
Fig. 10.

Simulation result with current system. (a) Simulated image when the zoom system is in tele-angle; MEMS DMs are non actuated. (b) Simulated image when the voltage applied to MEMS DMs; the first DM turns to convex and the second DM turns to concave, and the zoom system switches to wide-angle.

Tables (2)

Tables Icon

Table 1. Seidel Aberrations Caused by the DMs

Tables Icon

Table 2. Z-Shaped Zoom System Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D=D1+D2daD1D2.
δ=daD2D.
d+1=δ+db.
BFL1=(1d1D1)D,
z=cxx2+cyy21+[1(1+kx)cx2x2(1+ky)cyy2]1/2+i=116αixi+i=116βiyi+i=1NAiZi(ρ,ϕ),

Metrics