Abstract

We propose a new method of compensation for drifts in thermal cameras using a filter in place of a shutter. The latter method requires periodically closing the camera, thus causing the images to appear frozen frequently. Our technique of replacing the shutter with a filter eliminates this frozen image problem. In this paper we discuss the principles of the new method and present the obtained results.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Orzanowski, H. Madura, T. Sosnowski, and G. Bieszczad, “Investigations of response nonuniformity of microbolometer focal plane array in thermal camera,” Pomiary Automatyka Komputery w Gospodarce i Ochronie Srodowiska 2, 7–10 (2008), in Polish.
  2. W. Minkina, Pomiary Termowizyjne—Przyrzady I Metody(Wydawnictwa Politechniki Czestochowskiej, 2004), in Polish.
  3. T. Orzanowski, H. Madura, E. Powiada, and J. Pasierbinski, “Analysis of a readout circuit for a microbolometer focal plane array,” Pomiary Automatyka Kontrola 9, 16–20 (2006), in Polish.
  4. M. Kulinski, B. Ostrowski, and B. Wiecek, “High resolution microbolometer system for active and passive thermography,” presented at the 15th International Conference on Thermal Engineering and Thermogrammetry, Budapest, Hungary, 2007.
  5. B. Wiecek, R. Olbrycht, M. Kastek, T. Orzanowski, and T. Sosnowski, “The method for gain non-uniformity correction of microbolometer detectors,” Polish patent application P-387173, 02.02.2009 (2009).
  6. B. Wiecek and R. Olbrycht, “The method for elimination of temperature drift influence on the quality of thermal images generated in microbolometer detectors,” patent application no P-389303, 19.10.2009 (2009).
  7. R. Olbrycht, B. Wiecek, and T. Swiatczak, “Shutterless method for gain non-uniformity correction of microbolometer detectors,” in Proceedings of the 16th International Conference Mixed Design of Integrated Circuits and Systems (2009), pp. 378–380.
  8. R. Olbrycht and B. Wiecek, “Correction of microbolometer detector temperature drift (offset)” Pomiary Automatyka Kontrola 55, 890–893 (2009), in Polish.
  9. R. Olbrycht and B. Wiecek, “New method for two-point nonuniformity correction of microbolometer detectors,” in International Conference Quantitative InfraRed Thermography QIRT 2010 (2010), pp. 205–210.
  10. B. Wiecek and R. Olbrycht, “New method for on-line microbolometer detector nonuniformity correction,” presented at the 16th International Conference on Thermal Engineering and Thermogrammetry, Budapest, Hungary, 2009.
  11. S. N. Torres, R. A. Reeves, and M. M. Hakat, “Scene-based non-uniformity correction method using constant-range: performance and analysis,” Proceedings of 6th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Fla., USA, 2002.
  12. J. Pezoa, S. Torres, J. Cordova, and R. Reeves, “An enhancement to the constant range method for non-uniformity correction of infrared image sequences,” Lect. Notes Comput. Sci.   3287, 259–279 (2004).
    [CrossRef]
  13. V. I. Ovod, C. R. Baxter, and M. A. Massie, “Advanced image processing package for FPGA-based re-programmable miniature electronics,” Proc. SPIE 5783, 304–315 (2005).
    [CrossRef]
  14. B. Narayanan, R. C. Hardie, and R. A. Muse, “Scene-based nonuniformity correction technique for focal-plane arrays using readout architecture,” Appl. Opt. 44, 3482–3491 (2005).
    [CrossRef]
  15. W. Minkina and S. Dudzik, Infrared Thermography—Errors and Uncertainties (Wiley, 2009).

2009 (1)

R. Olbrycht and B. Wiecek, “Correction of microbolometer detector temperature drift (offset)” Pomiary Automatyka Kontrola 55, 890–893 (2009), in Polish.

2008 (1)

T. Orzanowski, H. Madura, T. Sosnowski, and G. Bieszczad, “Investigations of response nonuniformity of microbolometer focal plane array in thermal camera,” Pomiary Automatyka Komputery w Gospodarce i Ochronie Srodowiska 2, 7–10 (2008), in Polish.

2006 (1)

T. Orzanowski, H. Madura, E. Powiada, and J. Pasierbinski, “Analysis of a readout circuit for a microbolometer focal plane array,” Pomiary Automatyka Kontrola 9, 16–20 (2006), in Polish.

2005 (2)

V. I. Ovod, C. R. Baxter, and M. A. Massie, “Advanced image processing package for FPGA-based re-programmable miniature electronics,” Proc. SPIE 5783, 304–315 (2005).
[CrossRef]

B. Narayanan, R. C. Hardie, and R. A. Muse, “Scene-based nonuniformity correction technique for focal-plane arrays using readout architecture,” Appl. Opt. 44, 3482–3491 (2005).
[CrossRef]

2004 (1)

J. Pezoa, S. Torres, J. Cordova, and R. Reeves, “An enhancement to the constant range method for non-uniformity correction of infrared image sequences,” Lect. Notes Comput. Sci.   3287, 259–279 (2004).
[CrossRef]

Baxter, C. R.

V. I. Ovod, C. R. Baxter, and M. A. Massie, “Advanced image processing package for FPGA-based re-programmable miniature electronics,” Proc. SPIE 5783, 304–315 (2005).
[CrossRef]

Bieszczad, G.

T. Orzanowski, H. Madura, T. Sosnowski, and G. Bieszczad, “Investigations of response nonuniformity of microbolometer focal plane array in thermal camera,” Pomiary Automatyka Komputery w Gospodarce i Ochronie Srodowiska 2, 7–10 (2008), in Polish.

Cordova, J.

J. Pezoa, S. Torres, J. Cordova, and R. Reeves, “An enhancement to the constant range method for non-uniformity correction of infrared image sequences,” Lect. Notes Comput. Sci.   3287, 259–279 (2004).
[CrossRef]

Dudzik, S.

W. Minkina and S. Dudzik, Infrared Thermography—Errors and Uncertainties (Wiley, 2009).

Hakat, M. M.

S. N. Torres, R. A. Reeves, and M. M. Hakat, “Scene-based non-uniformity correction method using constant-range: performance and analysis,” Proceedings of 6th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Fla., USA, 2002.

Hardie, R. C.

Kastek, M.

B. Wiecek, R. Olbrycht, M. Kastek, T. Orzanowski, and T. Sosnowski, “The method for gain non-uniformity correction of microbolometer detectors,” Polish patent application P-387173, 02.02.2009 (2009).

Kulinski, M.

M. Kulinski, B. Ostrowski, and B. Wiecek, “High resolution microbolometer system for active and passive thermography,” presented at the 15th International Conference on Thermal Engineering and Thermogrammetry, Budapest, Hungary, 2007.

Madura, H.

T. Orzanowski, H. Madura, T. Sosnowski, and G. Bieszczad, “Investigations of response nonuniformity of microbolometer focal plane array in thermal camera,” Pomiary Automatyka Komputery w Gospodarce i Ochronie Srodowiska 2, 7–10 (2008), in Polish.

T. Orzanowski, H. Madura, E. Powiada, and J. Pasierbinski, “Analysis of a readout circuit for a microbolometer focal plane array,” Pomiary Automatyka Kontrola 9, 16–20 (2006), in Polish.

Massie, M. A.

V. I. Ovod, C. R. Baxter, and M. A. Massie, “Advanced image processing package for FPGA-based re-programmable miniature electronics,” Proc. SPIE 5783, 304–315 (2005).
[CrossRef]

Minkina, W.

W. Minkina and S. Dudzik, Infrared Thermography—Errors and Uncertainties (Wiley, 2009).

W. Minkina, Pomiary Termowizyjne—Przyrzady I Metody(Wydawnictwa Politechniki Czestochowskiej, 2004), in Polish.

Muse, R. A.

Narayanan, B.

Olbrycht, R.

R. Olbrycht and B. Wiecek, “Correction of microbolometer detector temperature drift (offset)” Pomiary Automatyka Kontrola 55, 890–893 (2009), in Polish.

R. Olbrycht and B. Wiecek, “New method for two-point nonuniformity correction of microbolometer detectors,” in International Conference Quantitative InfraRed Thermography QIRT 2010 (2010), pp. 205–210.

B. Wiecek and R. Olbrycht, “The method for elimination of temperature drift influence on the quality of thermal images generated in microbolometer detectors,” patent application no P-389303, 19.10.2009 (2009).

R. Olbrycht, B. Wiecek, and T. Swiatczak, “Shutterless method for gain non-uniformity correction of microbolometer detectors,” in Proceedings of the 16th International Conference Mixed Design of Integrated Circuits and Systems (2009), pp. 378–380.

B. Wiecek, R. Olbrycht, M. Kastek, T. Orzanowski, and T. Sosnowski, “The method for gain non-uniformity correction of microbolometer detectors,” Polish patent application P-387173, 02.02.2009 (2009).

B. Wiecek and R. Olbrycht, “New method for on-line microbolometer detector nonuniformity correction,” presented at the 16th International Conference on Thermal Engineering and Thermogrammetry, Budapest, Hungary, 2009.

Orzanowski, T.

T. Orzanowski, H. Madura, T. Sosnowski, and G. Bieszczad, “Investigations of response nonuniformity of microbolometer focal plane array in thermal camera,” Pomiary Automatyka Komputery w Gospodarce i Ochronie Srodowiska 2, 7–10 (2008), in Polish.

T. Orzanowski, H. Madura, E. Powiada, and J. Pasierbinski, “Analysis of a readout circuit for a microbolometer focal plane array,” Pomiary Automatyka Kontrola 9, 16–20 (2006), in Polish.

B. Wiecek, R. Olbrycht, M. Kastek, T. Orzanowski, and T. Sosnowski, “The method for gain non-uniformity correction of microbolometer detectors,” Polish patent application P-387173, 02.02.2009 (2009).

Ostrowski, B.

M. Kulinski, B. Ostrowski, and B. Wiecek, “High resolution microbolometer system for active and passive thermography,” presented at the 15th International Conference on Thermal Engineering and Thermogrammetry, Budapest, Hungary, 2007.

Ovod, V. I.

V. I. Ovod, C. R. Baxter, and M. A. Massie, “Advanced image processing package for FPGA-based re-programmable miniature electronics,” Proc. SPIE 5783, 304–315 (2005).
[CrossRef]

Pasierbinski, J.

T. Orzanowski, H. Madura, E. Powiada, and J. Pasierbinski, “Analysis of a readout circuit for a microbolometer focal plane array,” Pomiary Automatyka Kontrola 9, 16–20 (2006), in Polish.

Pezoa, J.

J. Pezoa, S. Torres, J. Cordova, and R. Reeves, “An enhancement to the constant range method for non-uniformity correction of infrared image sequences,” Lect. Notes Comput. Sci.   3287, 259–279 (2004).
[CrossRef]

Powiada, E.

T. Orzanowski, H. Madura, E. Powiada, and J. Pasierbinski, “Analysis of a readout circuit for a microbolometer focal plane array,” Pomiary Automatyka Kontrola 9, 16–20 (2006), in Polish.

Reeves, R.

J. Pezoa, S. Torres, J. Cordova, and R. Reeves, “An enhancement to the constant range method for non-uniformity correction of infrared image sequences,” Lect. Notes Comput. Sci.   3287, 259–279 (2004).
[CrossRef]

Reeves, R. A.

S. N. Torres, R. A. Reeves, and M. M. Hakat, “Scene-based non-uniformity correction method using constant-range: performance and analysis,” Proceedings of 6th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Fla., USA, 2002.

Sosnowski, T.

T. Orzanowski, H. Madura, T. Sosnowski, and G. Bieszczad, “Investigations of response nonuniformity of microbolometer focal plane array in thermal camera,” Pomiary Automatyka Komputery w Gospodarce i Ochronie Srodowiska 2, 7–10 (2008), in Polish.

B. Wiecek, R. Olbrycht, M. Kastek, T. Orzanowski, and T. Sosnowski, “The method for gain non-uniformity correction of microbolometer detectors,” Polish patent application P-387173, 02.02.2009 (2009).

Swiatczak, T.

R. Olbrycht, B. Wiecek, and T. Swiatczak, “Shutterless method for gain non-uniformity correction of microbolometer detectors,” in Proceedings of the 16th International Conference Mixed Design of Integrated Circuits and Systems (2009), pp. 378–380.

Torres, S.

J. Pezoa, S. Torres, J. Cordova, and R. Reeves, “An enhancement to the constant range method for non-uniformity correction of infrared image sequences,” Lect. Notes Comput. Sci.   3287, 259–279 (2004).
[CrossRef]

Torres, S. N.

S. N. Torres, R. A. Reeves, and M. M. Hakat, “Scene-based non-uniformity correction method using constant-range: performance and analysis,” Proceedings of 6th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Fla., USA, 2002.

Wiecek, B.

R. Olbrycht and B. Wiecek, “Correction of microbolometer detector temperature drift (offset)” Pomiary Automatyka Kontrola 55, 890–893 (2009), in Polish.

R. Olbrycht and B. Wiecek, “New method for two-point nonuniformity correction of microbolometer detectors,” in International Conference Quantitative InfraRed Thermography QIRT 2010 (2010), pp. 205–210.

B. Wiecek and R. Olbrycht, “New method for on-line microbolometer detector nonuniformity correction,” presented at the 16th International Conference on Thermal Engineering and Thermogrammetry, Budapest, Hungary, 2009.

R. Olbrycht, B. Wiecek, and T. Swiatczak, “Shutterless method for gain non-uniformity correction of microbolometer detectors,” in Proceedings of the 16th International Conference Mixed Design of Integrated Circuits and Systems (2009), pp. 378–380.

B. Wiecek and R. Olbrycht, “The method for elimination of temperature drift influence on the quality of thermal images generated in microbolometer detectors,” patent application no P-389303, 19.10.2009 (2009).

M. Kulinski, B. Ostrowski, and B. Wiecek, “High resolution microbolometer system for active and passive thermography,” presented at the 15th International Conference on Thermal Engineering and Thermogrammetry, Budapest, Hungary, 2007.

B. Wiecek, R. Olbrycht, M. Kastek, T. Orzanowski, and T. Sosnowski, “The method for gain non-uniformity correction of microbolometer detectors,” Polish patent application P-387173, 02.02.2009 (2009).

Appl. Opt. (1)

Lect. Notes Comput. Sci. (1)

J. Pezoa, S. Torres, J. Cordova, and R. Reeves, “An enhancement to the constant range method for non-uniformity correction of infrared image sequences,” Lect. Notes Comput. Sci.   3287, 259–279 (2004).
[CrossRef]

Pomiary Automatyka Komputery w Gospodarce i Ochronie Srodowiska (1)

T. Orzanowski, H. Madura, T. Sosnowski, and G. Bieszczad, “Investigations of response nonuniformity of microbolometer focal plane array in thermal camera,” Pomiary Automatyka Komputery w Gospodarce i Ochronie Srodowiska 2, 7–10 (2008), in Polish.

Pomiary Automatyka Kontrola (2)

T. Orzanowski, H. Madura, E. Powiada, and J. Pasierbinski, “Analysis of a readout circuit for a microbolometer focal plane array,” Pomiary Automatyka Kontrola 9, 16–20 (2006), in Polish.

R. Olbrycht and B. Wiecek, “Correction of microbolometer detector temperature drift (offset)” Pomiary Automatyka Kontrola 55, 890–893 (2009), in Polish.

Proc. SPIE (1)

V. I. Ovod, C. R. Baxter, and M. A. Massie, “Advanced image processing package for FPGA-based re-programmable miniature electronics,” Proc. SPIE 5783, 304–315 (2005).
[CrossRef]

Other (9)

W. Minkina, Pomiary Termowizyjne—Przyrzady I Metody(Wydawnictwa Politechniki Czestochowskiej, 2004), in Polish.

W. Minkina and S. Dudzik, Infrared Thermography—Errors and Uncertainties (Wiley, 2009).

R. Olbrycht and B. Wiecek, “New method for two-point nonuniformity correction of microbolometer detectors,” in International Conference Quantitative InfraRed Thermography QIRT 2010 (2010), pp. 205–210.

B. Wiecek and R. Olbrycht, “New method for on-line microbolometer detector nonuniformity correction,” presented at the 16th International Conference on Thermal Engineering and Thermogrammetry, Budapest, Hungary, 2009.

S. N. Torres, R. A. Reeves, and M. M. Hakat, “Scene-based non-uniformity correction method using constant-range: performance and analysis,” Proceedings of 6th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Fla., USA, 2002.

M. Kulinski, B. Ostrowski, and B. Wiecek, “High resolution microbolometer system for active and passive thermography,” presented at the 15th International Conference on Thermal Engineering and Thermogrammetry, Budapest, Hungary, 2007.

B. Wiecek, R. Olbrycht, M. Kastek, T. Orzanowski, and T. Sosnowski, “The method for gain non-uniformity correction of microbolometer detectors,” Polish patent application P-387173, 02.02.2009 (2009).

B. Wiecek and R. Olbrycht, “The method for elimination of temperature drift influence on the quality of thermal images generated in microbolometer detectors,” patent application no P-389303, 19.10.2009 (2009).

R. Olbrycht, B. Wiecek, and T. Swiatczak, “Shutterless method for gain non-uniformity correction of microbolometer detectors,” in Proceedings of the 16th International Conference Mixed Design of Integrated Circuits and Systems (2009), pp. 378–380.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Raw thermograms obtained directly from the microbolometer matrix of (a) a-Si (amorphous silicon) [4] and (b) VOx (vanadium oxide) type.

Fig. 2.
Fig. 2.

(a) Reference thermogram (directly after one-point NUC) with temperature values in °C, and (b) thermogram of the same scene, with temperature values altered by the thermal drift phenomenon.

Fig. 3.
Fig. 3.

(a) Characteristics of microbolometer detectors in a wide range of temperatures, (b) linear approximation using Eq. (1) of those characteristics in a narrow temperature range, corresponding to the (ϕ1, ϕ2) range of infrared flux, (c) the effect of one-point NUC (offset NUC), and (d) the effect of two-point NUC (offset and gain NUC) [7].

Fig. 4.
Fig. 4.

Reference thermogram divided into three zones of different dynamics.

Fig. 5.
Fig. 5.

(a) Silicon infrared filter used for research (τf=0, 475), (b) thermal camera with perpendicular, and (c) inclined filter placement [9].

Fig. 6.
Fig. 6.

Values of absolute mean error of temperature measurement before and after NUC correction.

Fig. 7.
Fig. 7.

Exemplary nonuniformity of the offset (Oij) parameter across the microbolometer matrix, obtained (a) 3 min 15 s and (b) 7 min 18 s after turning off the shutter-based NUC built into the thermal camera.

Fig. 8.
Fig. 8.

Plot of absolute temperature measurement errors [°C] before and after NUC with the proposed method (infrared filter inclined).

Tables (2)

Tables Icon

Table 1. Description of Zones Belonging to the Scene Used During the Experiment

Tables Icon

Table 2. R, B, F, and A Calibration Parameters of the Thermal Camera Used for Measurements

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Yij*(ϕ)=Yij(ϕ)Oij,
εf=1τfρf,
Yij(ϕ)=Gϕ+Oij=Yij*(ϕ)+Oij,
YijF(ϕ)=Yij*(τfϕ+(1τf)ϕf)+Oij.
YijF(ϕ)=Gτfϕ+(1τf)Gϕf+Oij=τfYij*(ϕ)+(1τf)Yf+Oij.
Yij*(ϕ)=Yij(ϕ)YijF(ϕ)1τf+Yf,
Oij=YijF(ϕ)τf·Yij(ϕ)1τfYf.
RNU=1M·Ni=1Mj=1N(YijREF(ϕ)Yij*(ϕ))2.
T=Bln(RYij(*)(ϕ)A)+F.
ΔT=Bln(RY¯+RNUA)+FBln(RY¯A)+F.
Y¯=1M·Ni=1Mj=1NYij(*)(ϕ).

Metrics