Abstract

We present a novel method for small surface defect detection based on the spatially filtered dynamic speckles. This method possesses high fidelity and versatility. Factors defining resolution of the proposed method is estimated and it is shown that resolution depends solely on the geometrical parameters of the optical system. Experimental results demonstrate feasibility of the proposed method for surface defect detection and are in good agreement with the theoretical estimations. A prototype for online detection of the defects with diameter of 400 µm is presented. Ways to improve prototype performance and the method resolution are discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Asaeda, K. Nousou, M. Imanisi, Y. Suzuki, and S. Katabami, “Inspection system and process,” U.S. patent 5,734,742 (31March1998).
  2. V. R. Schneider and H.-J. Braach, “Method and device for the automatic detection of surface defects for continuously cast products with continuous mechanical removal of the surface,” U.S. patent 6,184,924 (2February2001).
  3. D. Rosenthal, S. Schulze, I. Schuster, P. Sudau, R. Fackert, A. Weinert, and W. Schumacher, “Method for detecting and classifying surface defects on continuously cast slabs,” patent WO 2008/128504 (30October2008).
  4. C. Quan, S. H. Wang, C. J. Tay, H. M. Shang, and K. C. Chan, “Inspection of micro-cracks on solderball surface using a laser scattering method,” Opt. Commun. 183, 19–27 (2000).
    [CrossRef]
  5. A. Abuazza, D. Brabazon, and M. A. El-Baradie, “Multi-beam fibre-optic laser scanning system for surface defect recognition,” J. Mater. Process. Technol. 155–156, 2065–2070 (2004).
    [CrossRef]
  6. E. Matzan, “Dual laser web defect scanner,” U.S. patent 6,934,029 (23August2005).
  7. O. V. Angelsky, P. P. Maksimyak, V. V. Ryukhtin, and S. G. Hanson, “New feasibilities for characterizing rough surfaces by optical-correlation techniques,” Appl. Opt. 40, 5693–5707 (2001).
    [CrossRef]
  8. O. V. Angelsky, D. N. Burkovets, P. P. Maksimyak, and S. G. Hanson, “Applicability of the singular-optics concept for diagnostics of random and fractal rough surfaces,” Appl. Opt. 42, 4529–4540 (2003).
    [CrossRef]
  9. T. Yoshimura, “Statistical properties of dynamic speckles,” J. Opt. Soc. Am. A 3, 1032–1054 (1986).
    [CrossRef]
  10. N. Takai, T. Iwai, and T. Asakura, “Real-time velocity measurement for a diffuse object using zero-crossings of laser speckle,” J. Opt. Soc. Am. 70, 450–455 (1980).
    [CrossRef]
  11. M. Giglio, S. Musazzi, and U. Perini, “Distance measurement from a moving object based on speckle velocity detection,” Appl. Opt. 20, 721–722 (1981).
    [CrossRef]
  12. E. Nippolainen, D. V. Semenov, and A. A. Kamshilin, “Dynamic speckle effect induced by an acousto-optic deflector for fast range sensing,” Opt. Lett. 30, 3147–3149 (2005).
    [CrossRef]
  13. T. Asakura and N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
    [CrossRef]
  14. Y. Aizu and T. Asakura, Spatial Filtering Velocimetry: Fundamentals and Applications (Springer, 2006).
  15. D. V. Semenov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Statistical properties of dynamic speckles formed by a deflecting laser beam,” Opt. Express 16, 1238–1249 (2008).
    [CrossRef]
  16. S. V. Miridonov, I. Sidorov, E. Nippolainen, and A. A. Kamshilin, “Accuracy of measuring systems using dynamic speckles,” J. Opt. Soc. Am. A 26, 745–753 (2009).
    [CrossRef]
  17. D. V. Semenov, E. Nippolainen, and A. A. Kamshilin, “Accuracy and resolution of a dynamic-speckle profilometer,” Appl. Opt. 45, 411–418 (2006).
    [CrossRef]
  18. L. M. Veselov and I. A. Popov, “Statistical properties of modulated dynamic speckles,” Opt. Spectrosc. 84, 268–272 (1998).
  19. A. Hayashi and Y. Kitagawa, “Image velocity sensing using an optical fiber array,” Appl. Opt. 21, 1394–1399 (1982).
    [CrossRef]
  20. I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Distance sensing using dynamic speckles formed by micro-electro-mechanical-systems deflector,” Opt. Rev. 17, 161–165 (2010).
    [CrossRef]

2010 (1)

I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Distance sensing using dynamic speckles formed by micro-electro-mechanical-systems deflector,” Opt. Rev. 17, 161–165 (2010).
[CrossRef]

2009 (1)

2008 (1)

2006 (1)

2005 (1)

2004 (1)

A. Abuazza, D. Brabazon, and M. A. El-Baradie, “Multi-beam fibre-optic laser scanning system for surface defect recognition,” J. Mater. Process. Technol. 155–156, 2065–2070 (2004).
[CrossRef]

2003 (1)

2001 (1)

2000 (1)

C. Quan, S. H. Wang, C. J. Tay, H. M. Shang, and K. C. Chan, “Inspection of micro-cracks on solderball surface using a laser scattering method,” Opt. Commun. 183, 19–27 (2000).
[CrossRef]

1998 (1)

L. M. Veselov and I. A. Popov, “Statistical properties of modulated dynamic speckles,” Opt. Spectrosc. 84, 268–272 (1998).

1986 (1)

1982 (1)

1981 (2)

M. Giglio, S. Musazzi, and U. Perini, “Distance measurement from a moving object based on speckle velocity detection,” Appl. Opt. 20, 721–722 (1981).
[CrossRef]

T. Asakura and N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

1980 (1)

Abuazza, A.

A. Abuazza, D. Brabazon, and M. A. El-Baradie, “Multi-beam fibre-optic laser scanning system for surface defect recognition,” J. Mater. Process. Technol. 155–156, 2065–2070 (2004).
[CrossRef]

Aizu, Y.

Y. Aizu and T. Asakura, Spatial Filtering Velocimetry: Fundamentals and Applications (Springer, 2006).

Angelsky, O. V.

Asaeda, T.

T. Asaeda, K. Nousou, M. Imanisi, Y. Suzuki, and S. Katabami, “Inspection system and process,” U.S. patent 5,734,742 (31March1998).

Asakura, T.

T. Asakura and N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

N. Takai, T. Iwai, and T. Asakura, “Real-time velocity measurement for a diffuse object using zero-crossings of laser speckle,” J. Opt. Soc. Am. 70, 450–455 (1980).
[CrossRef]

Y. Aizu and T. Asakura, Spatial Filtering Velocimetry: Fundamentals and Applications (Springer, 2006).

Braach, H.-J.

V. R. Schneider and H.-J. Braach, “Method and device for the automatic detection of surface defects for continuously cast products with continuous mechanical removal of the surface,” U.S. patent 6,184,924 (2February2001).

Brabazon, D.

A. Abuazza, D. Brabazon, and M. A. El-Baradie, “Multi-beam fibre-optic laser scanning system for surface defect recognition,” J. Mater. Process. Technol. 155–156, 2065–2070 (2004).
[CrossRef]

Burkovets, D. N.

Chan, K. C.

C. Quan, S. H. Wang, C. J. Tay, H. M. Shang, and K. C. Chan, “Inspection of micro-cracks on solderball surface using a laser scattering method,” Opt. Commun. 183, 19–27 (2000).
[CrossRef]

El-Baradie, M. A.

A. Abuazza, D. Brabazon, and M. A. El-Baradie, “Multi-beam fibre-optic laser scanning system for surface defect recognition,” J. Mater. Process. Technol. 155–156, 2065–2070 (2004).
[CrossRef]

Fackert, R.

D. Rosenthal, S. Schulze, I. Schuster, P. Sudau, R. Fackert, A. Weinert, and W. Schumacher, “Method for detecting and classifying surface defects on continuously cast slabs,” patent WO 2008/128504 (30October2008).

Giglio, M.

Hanson, S. G.

Hayashi, A.

Imanisi, M.

T. Asaeda, K. Nousou, M. Imanisi, Y. Suzuki, and S. Katabami, “Inspection system and process,” U.S. patent 5,734,742 (31March1998).

Iwai, T.

Kamshilin, A. A.

Katabami, S.

T. Asaeda, K. Nousou, M. Imanisi, Y. Suzuki, and S. Katabami, “Inspection system and process,” U.S. patent 5,734,742 (31March1998).

Kitagawa, Y.

Maksimyak, P. P.

Matzan, E.

E. Matzan, “Dual laser web defect scanner,” U.S. patent 6,934,029 (23August2005).

Miridonov, S. V.

Musazzi, S.

Nippolainen, E.

Nousou, K.

T. Asaeda, K. Nousou, M. Imanisi, Y. Suzuki, and S. Katabami, “Inspection system and process,” U.S. patent 5,734,742 (31March1998).

Perini, U.

Popov, I. A.

L. M. Veselov and I. A. Popov, “Statistical properties of modulated dynamic speckles,” Opt. Spectrosc. 84, 268–272 (1998).

Quan, C.

C. Quan, S. H. Wang, C. J. Tay, H. M. Shang, and K. C. Chan, “Inspection of micro-cracks on solderball surface using a laser scattering method,” Opt. Commun. 183, 19–27 (2000).
[CrossRef]

Rosenthal, D.

D. Rosenthal, S. Schulze, I. Schuster, P. Sudau, R. Fackert, A. Weinert, and W. Schumacher, “Method for detecting and classifying surface defects on continuously cast slabs,” patent WO 2008/128504 (30October2008).

Ryukhtin, V. V.

Schneider, V. R.

V. R. Schneider and H.-J. Braach, “Method and device for the automatic detection of surface defects for continuously cast products with continuous mechanical removal of the surface,” U.S. patent 6,184,924 (2February2001).

Schulze, S.

D. Rosenthal, S. Schulze, I. Schuster, P. Sudau, R. Fackert, A. Weinert, and W. Schumacher, “Method for detecting and classifying surface defects on continuously cast slabs,” patent WO 2008/128504 (30October2008).

Schumacher, W.

D. Rosenthal, S. Schulze, I. Schuster, P. Sudau, R. Fackert, A. Weinert, and W. Schumacher, “Method for detecting and classifying surface defects on continuously cast slabs,” patent WO 2008/128504 (30October2008).

Schuster, I.

D. Rosenthal, S. Schulze, I. Schuster, P. Sudau, R. Fackert, A. Weinert, and W. Schumacher, “Method for detecting and classifying surface defects on continuously cast slabs,” patent WO 2008/128504 (30October2008).

Semenov, D. V.

Shang, H. M.

C. Quan, S. H. Wang, C. J. Tay, H. M. Shang, and K. C. Chan, “Inspection of micro-cracks on solderball surface using a laser scattering method,” Opt. Commun. 183, 19–27 (2000).
[CrossRef]

Sidorov, I.

Sidorov, I. S.

I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Distance sensing using dynamic speckles formed by micro-electro-mechanical-systems deflector,” Opt. Rev. 17, 161–165 (2010).
[CrossRef]

Sudau, P.

D. Rosenthal, S. Schulze, I. Schuster, P. Sudau, R. Fackert, A. Weinert, and W. Schumacher, “Method for detecting and classifying surface defects on continuously cast slabs,” patent WO 2008/128504 (30October2008).

Suzuki, Y.

T. Asaeda, K. Nousou, M. Imanisi, Y. Suzuki, and S. Katabami, “Inspection system and process,” U.S. patent 5,734,742 (31March1998).

Takai, N.

T. Asakura and N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

N. Takai, T. Iwai, and T. Asakura, “Real-time velocity measurement for a diffuse object using zero-crossings of laser speckle,” J. Opt. Soc. Am. 70, 450–455 (1980).
[CrossRef]

Tay, C. J.

C. Quan, S. H. Wang, C. J. Tay, H. M. Shang, and K. C. Chan, “Inspection of micro-cracks on solderball surface using a laser scattering method,” Opt. Commun. 183, 19–27 (2000).
[CrossRef]

Veselov, L. M.

L. M. Veselov and I. A. Popov, “Statistical properties of modulated dynamic speckles,” Opt. Spectrosc. 84, 268–272 (1998).

Wang, S. H.

C. Quan, S. H. Wang, C. J. Tay, H. M. Shang, and K. C. Chan, “Inspection of micro-cracks on solderball surface using a laser scattering method,” Opt. Commun. 183, 19–27 (2000).
[CrossRef]

Weinert, A.

D. Rosenthal, S. Schulze, I. Schuster, P. Sudau, R. Fackert, A. Weinert, and W. Schumacher, “Method for detecting and classifying surface defects on continuously cast slabs,” patent WO 2008/128504 (30October2008).

Yoshimura, T.

Appl. Opt. (5)

Appl. Phys. (1)

T. Asakura and N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

J. Mater. Process. Technol. (1)

A. Abuazza, D. Brabazon, and M. A. El-Baradie, “Multi-beam fibre-optic laser scanning system for surface defect recognition,” J. Mater. Process. Technol. 155–156, 2065–2070 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

C. Quan, S. H. Wang, C. J. Tay, H. M. Shang, and K. C. Chan, “Inspection of micro-cracks on solderball surface using a laser scattering method,” Opt. Commun. 183, 19–27 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Rev. (1)

I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, “Distance sensing using dynamic speckles formed by micro-electro-mechanical-systems deflector,” Opt. Rev. 17, 161–165 (2010).
[CrossRef]

Opt. Spectrosc. (1)

L. M. Veselov and I. A. Popov, “Statistical properties of modulated dynamic speckles,” Opt. Spectrosc. 84, 268–272 (1998).

Other (5)

Y. Aizu and T. Asakura, Spatial Filtering Velocimetry: Fundamentals and Applications (Springer, 2006).

E. Matzan, “Dual laser web defect scanner,” U.S. patent 6,934,029 (23August2005).

T. Asaeda, K. Nousou, M. Imanisi, Y. Suzuki, and S. Katabami, “Inspection system and process,” U.S. patent 5,734,742 (31March1998).

V. R. Schneider and H.-J. Braach, “Method and device for the automatic detection of surface defects for continuously cast products with continuous mechanical removal of the surface,” U.S. patent 6,184,924 (2February2001).

D. Rosenthal, S. Schulze, I. Schuster, P. Sudau, R. Fackert, A. Weinert, and W. Schumacher, “Method for detecting and classifying surface defects on continuously cast slabs,” patent WO 2008/128504 (30October2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Typical scheme of the optical system for measuring the mean velocity of dynamic speckles.

Fig. 2.
Fig. 2.

Schematic layout of the experimental setup used for demonstration of feasibility of the defect detection method.

Fig. 3.
Fig. 3.

Oscilloscope traces of the photodiode response recorded at the moment when the laser beam scans the defect-free surface area (a) or the area containing the 400 µm-hole (b, c). Traces (a) and (b) were recorded with NA=0.06, DF=72.9mm, and Λ=254μm; while trace (c) with NA=0.12, DF=62.9mm, and Λ=127μm.

Fig. 4.
Fig. 4.

Configuration of the defect detection system prototype based on dynamic speckles.

Fig. 5.
Fig. 5.

Test surface with the drilled holes of 0.5, 1, 1.5, and 2 mm (a), and 2D defect map of this surface created by the prototype (b). The defect map was created using following parameters: UThr=0.35V and Δtol=50%.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

fSP=VBSΛ(1+DFRW).
Δx=VBSfSP=Λ(1+DFRW).
rS=DFλπw=DFλπNARW.
Δx=M·λπ·NA,
U2(t)={1,U1(t)>UThr0,UThrU1(t)UThr1,U1(t)<UThr.
Tmin=12fSP(1+Δtol)andTmax=12fSP(1Δtol),

Metrics