Abstract

To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Jing, G. Meloni, G. Berrettini, L. Potì, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010).
    [CrossRef]
  2. S. Zhang, Z. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
    [CrossRef]
  3. J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
    [CrossRef]
  4. R. Geldenhuys, Y. Liu, N. Calabretta, M. Hill, F. Huijskens, G. Khoe, and H. J. Dorren, “All-optical signal processing for optical packet switching,” J. Opt. Netw. 3, 854–865 (2004).
    [CrossRef]
  5. N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
    [CrossRef]
  6. S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren, “Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
    [CrossRef]
  7. M. S. Alam and M. A. Karim, “Multiple-valued logic unit design using polarization-encoded optical shadow-casting,” Opt. Laser Technol. 25, 17–23 (1993).
    [CrossRef]
  8. T. Chattopadhyay, “All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer-based switch: a theoretical study,” Appl. Opt. 49, 5226–5235 (2010).
    [CrossRef]
  9. A. K. Ghosh and A. Basuray, “Trinary flip-flops using Savart plate and spatial light modulator for optical computation in multivalued logic,” Optoelectron. Lett. 4, 0443–0446 (2008).
    [CrossRef]
  10. S. K. Garai, “Method of all-optical frequency encoded decimal to binary and BCD, binary to gray and gray to binary data conversion using semiconductor optical amplifiers,” Appl. Opt. 50, 3795–3807 (2011).
    [CrossRef]
  11. S. K. Garai, “A novel method of designing all optical frequency encoded Fredkin and Toffoli logic gates using semiconductor optical amplifiers,” IET Optoelectron. 5, 247–254 (2011).
    [CrossRef]
  12. S. K. Garai, “A novel all-optical frequency encoded method to develop arithmetic and logic unit (ALU) using semiconductor optical amplifiers,” J. Lightwave Technol. 29, 3506–3514 (2011).
    [CrossRef]
  13. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic, 2002).
  14. N. K. Dutta and Q. Wang, “Function properties and applications,” Semiconductor Optical Amplifiers (World Scientific, 2006), Chap. 8.
  15. L. Q. Guo and M. J. Connelly, “All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier,” Opt. Express 14, 2938–2943 (2006).
    [CrossRef]
  16. L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotation in semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007).
    [CrossRef]
  17. Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
    [CrossRef]
  18. S. K. Garai, “A method of developing frequency encoded multi-bit optical data comparator using semiconductor optical amplifier,” Opt. Laser Technol. 43, 124–131 (2011).
    [CrossRef]
  19. G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
    [CrossRef]
  20. S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010).
    [CrossRef]
  21. H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
    [CrossRef]
  22. H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zender interferometer,” Opt. Express 13, 1892–1899 (2005).
    [CrossRef]

2011 (4)

S. K. Garai, “A novel method of designing all optical frequency encoded Fredkin and Toffoli logic gates using semiconductor optical amplifiers,” IET Optoelectron. 5, 247–254 (2011).
[CrossRef]

S. K. Garai, “A method of developing frequency encoded multi-bit optical data comparator using semiconductor optical amplifier,” Opt. Laser Technol. 43, 124–131 (2011).
[CrossRef]

S. K. Garai, “Method of all-optical frequency encoded decimal to binary and BCD, binary to gray and gray to binary data conversion using semiconductor optical amplifiers,” Appl. Opt. 50, 3795–3807 (2011).
[CrossRef]

S. K. Garai, “A novel all-optical frequency encoded method to develop arithmetic and logic unit (ALU) using semiconductor optical amplifiers,” J. Lightwave Technol. 29, 3506–3514 (2011).
[CrossRef]

2010 (3)

S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010).
[CrossRef]

W. Jing, G. Meloni, G. Berrettini, L. Potì, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010).
[CrossRef]

T. Chattopadhyay, “All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer-based switch: a theoretical study,” Appl. Opt. 49, 5226–5235 (2010).
[CrossRef]

2008 (1)

A. K. Ghosh and A. Basuray, “Trinary flip-flops using Savart plate and spatial light modulator for optical computation in multivalued logic,” Optoelectron. Lett. 4, 0443–0446 (2008).
[CrossRef]

2007 (4)

J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
[CrossRef]

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren, “Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotation in semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007).
[CrossRef]

2006 (1)

2005 (3)

2004 (1)

2003 (1)

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

1997 (1)

G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
[CrossRef]

1993 (1)

M. S. Alam and M. A. Karim, “Multiple-valued logic unit design using polarization-encoded optical shadow-casting,” Opt. Laser Technol. 25, 17–23 (1993).
[CrossRef]

Alam, M. S.

M. S. Alam and M. A. Karim, “Multiple-valued logic unit design using polarization-encoded optical shadow-casting,” Opt. Laser Technol. 25, 17–23 (1993).
[CrossRef]

Avramopoulos, H.

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

Bakopoulos, P.

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

Basuray, A.

A. K. Ghosh and A. Basuray, “Trinary flip-flops using Savart plate and spatial light modulator for optical computation in multivalued logic,” Optoelectron. Lett. 4, 0443–0446 (2008).
[CrossRef]

Berrettini, G.

W. Jing, G. Meloni, G. Berrettini, L. Potì, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010).
[CrossRef]

Bogoni, A.

W. Jing, G. Meloni, G. Berrettini, L. Potì, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010).
[CrossRef]

Calabretta, N.

R. Geldenhuys, Y. Liu, N. Calabretta, M. Hill, F. Huijskens, G. Khoe, and H. J. Dorren, “All-optical signal processing for optical packet switching,” J. Opt. Netw. 3, 854–865 (2004).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Capik, R. J.

G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
[CrossRef]

Chattopadhyay, T.

Chien, M.

G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
[CrossRef]

Clavero, R.

J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
[CrossRef]

Connelly, M. J.

L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotation in semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007).
[CrossRef]

L. Q. Guo and M. J. Connelly, “All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier,” Opt. Express 14, 2938–2943 (2006).
[CrossRef]

M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic, 2002).

de Waardt, H.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Derosier, R. M.

G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
[CrossRef]

Dong, H.

Dorren, H. J.

Dorren, H. J. S.

J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
[CrossRef]

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren, “Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef]

S. Zhang, Z. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Dreyer, K.

G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
[CrossRef]

Dutta, N. K.

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zender interferometer,” Opt. Express 13, 1892–1899 (2005).
[CrossRef]

N. K. Dutta and Q. Wang, “Function properties and applications,” Semiconductor Optical Amplifiers (World Scientific, 2006), Chap. 8.

Garai, S. K.

S. K. Garai, “A method of developing frequency encoded multi-bit optical data comparator using semiconductor optical amplifier,” Opt. Laser Technol. 43, 124–131 (2011).
[CrossRef]

S. K. Garai, “Method of all-optical frequency encoded decimal to binary and BCD, binary to gray and gray to binary data conversion using semiconductor optical amplifiers,” Appl. Opt. 50, 3795–3807 (2011).
[CrossRef]

S. K. Garai, “A novel all-optical frequency encoded method to develop arithmetic and logic unit (ALU) using semiconductor optical amplifiers,” J. Lightwave Technol. 29, 3506–3514 (2011).
[CrossRef]

S. K. Garai, “A novel method of designing all optical frequency encoded Fredkin and Toffoli logic gates using semiconductor optical amplifiers,” IET Optoelectron. 5, 247–254 (2011).
[CrossRef]

S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010).
[CrossRef]

Geldenhuys, R.

Ghosh, A. K.

A. K. Ghosh and A. Basuray, “Trinary flip-flops using Savart plate and spatial light modulator for optical computation in multivalued logic,” Optoelectron. Lett. 4, 0443–0446 (2008).
[CrossRef]

Guo, L. Q.

L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotation in semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007).
[CrossRef]

L. Q. Guo and M. J. Connelly, “All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier,” Opt. Express 14, 2938–2943 (2006).
[CrossRef]

Herrera, J.

J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
[CrossRef]

Hill, M.

Hill, M. T.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Huijskens, F.

Jing, W.

W. Jing, G. Meloni, G. Berrettini, L. Potì, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010).
[CrossRef]

Ju, H.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren, “Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef]

Kanellos, G. T.

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

Karim, M. A.

M. S. Alam and M. A. Karim, “Multiple-valued logic unit design using polarization-encoded optical shadow-casting,” Opt. Laser Technol. 25, 17–23 (1993).
[CrossRef]

Khoe, G.

Khoe, G. D.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren, “Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef]

S. Zhang, Z. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Koonen, A. M. J.

J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
[CrossRef]

Koren, U.

G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
[CrossRef]

Lenstra, D.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren, “Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef]

Li, Z.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren, “Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

S. Zhang, Z. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
[CrossRef]

Liu, Y.

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren, “Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
[CrossRef]

S. Zhang, Z. Li, Y. Liu, G. D. Khoe, and H. J. S. Dorren, “Optical shift register based on an optical flip-flop memory with a single active element,” Opt. Express 13, 9708–9713 (2005).
[CrossRef]

R. Geldenhuys, Y. Liu, N. Calabretta, M. Hill, F. Huijskens, G. Khoe, and H. J. Dorren, “All-optical signal processing for optical packet switching,” J. Opt. Netw. 3, 854–865 (2004).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Marti, J.

J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
[CrossRef]

Martinez, J. M.

J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
[CrossRef]

Maxwell, G.

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

Meloni, G.

W. Jing, G. Meloni, G. Berrettini, L. Potì, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010).
[CrossRef]

Miller, B. I.

G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
[CrossRef]

Mukhopadhyay, S.

S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010).
[CrossRef]

Petrantonakis, D.

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

Pleros, N.

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

Potì, L.

W. Jing, G. Meloni, G. Berrettini, L. Potì, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010).
[CrossRef]

Poustie, A.

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

Ramos, F.

J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
[CrossRef]

Raybon, G.

G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
[CrossRef]

Sun, H.

Tangdiongga, E.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J. S. Dorren, “SOA-based all-optical switch with subpicosecond full recovery,” Opt. Express 13, 942–947 (2005).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

Tsiokos, D.

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

Wang, Q.

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zender interferometer,” Opt. Express 13, 1892–1899 (2005).
[CrossRef]

N. K. Dutta and Q. Wang, “Function properties and applications,” Semiconductor Optical Amplifiers (World Scientific, 2006), Chap. 8.

Young, M. G.

G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
[CrossRef]

Zakynthinos, P.

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

Zhang, S.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

W. Jing, G. Meloni, G. Berrettini, L. Potì, and A. Bogoni, “All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates,” IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, “All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks,” IEEE Photon. Technol. Lett. 19, 1316–1318 (2007).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 90–92 (2003).
[CrossRef]

G. Raybon, U. Koren, B. I. Miller, M. Chien, M. G. Young, R. J. Capik, K. Dreyer, and R. M. Derosier, “A wavelength-tunable semiconductor amplifier/filter for add/drop multiplexing in WDM networks,” IEEE Photon. Technol. Lett. 9, 40–42 (1997).
[CrossRef]

IET Optoelectron. (2)

S. K. Garai, “A novel method of designing all optical frequency encoded Fredkin and Toffoli logic gates using semiconductor optical amplifiers,” IET Optoelectron. 5, 247–254 (2011).
[CrossRef]

N. Pleros, P. Zakynthinos, A. Poustie, D. Tsiokos, P. Bakopoulos, D. Petrantonakis, G. T. Kanellos, G. Maxwell, and H. Avramopoulos, “Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching,” IET Optoelectron. 1, 120–126 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Opt. Commun. (1)

S. Zhang, D. Lenstra, Y. Liu, H. Ju, Z. Li, G. D. Khoe, and H. J. S. Dorren, “Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium,” Opt. Commun. 270, 85–95 (2007).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (3)

S. K. Garai and S. Mukhopadhyay, “A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier,” Opt. Laser Technol. 42, 1122–1127 (2010).
[CrossRef]

S. K. Garai, “A method of developing frequency encoded multi-bit optical data comparator using semiconductor optical amplifier,” Opt. Laser Technol. 43, 124–131 (2011).
[CrossRef]

M. S. Alam and M. A. Karim, “Multiple-valued logic unit design using polarization-encoded optical shadow-casting,” Opt. Laser Technol. 25, 17–23 (1993).
[CrossRef]

Optoelectron. Lett. (1)

A. K. Ghosh and A. Basuray, “Trinary flip-flops using Savart plate and spatial light modulator for optical computation in multivalued logic,” Optoelectron. Lett. 4, 0443–0446 (2008).
[CrossRef]

Proc. SPIE (1)

L. Q. Guo and M. J. Connelly, “A Poincare approach to investigate nonlinear polarization rotation in semiconductor optical amplifiers and its application to all-optical wavelength conversion,” Proc. SPIE 6783, 678325 (2007).
[CrossRef]

Other (2)

M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic, 2002).

N. K. Dutta and Q. Wang, “Function properties and applications,” Semiconductor Optical Amplifiers (World Scientific, 2006), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Block diagram of (a) JK flip-flop, (b) D flip-flop, and (c) T flip-flop.

Fig. 2.
Fig. 2.

All-optical trinary JK flip-flop circuit.

Fig. 3.
Fig. 3.

(a) All-optical controlled transmission unit. (b) All-optical tristate memory block.

Fig. 4.
Fig. 4.

All-optical logic unit (J AND K OR J XNOR K).

Fig. 5.
Fig. 5.

(a) All-optical trinary D flip-flop circuit. (b) Modified all-optical trinary D flip-flop circuit.

Fig. 6.
Fig. 6.

All-optical trinary T flip-flop circuit.

Tables (4)

Tables Icon

Table 1. Excitation Table of Trinary JK Flip-Flop

Tables Icon

Table 2. Excitation Table of Trinary D Flip-Flop

Tables Icon

Table 3. Excitation Table of Trinary T Flip-Flop

Tables Icon

Table 4. Operation Scheme of a Trinary JK Flip-Flop in Tabular Form

Metrics