F. Stout and J. H. Kalivas, “Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts,” J. Chemom. 20, 22–33 (2006).

[CrossRef]

A. R. Roig and J. L. Alessandrini, “Particle size distributions from static light scattering with regularized Non-Negative Least Squares Constraints,” Part. Part. Syst. Charact. 23, 431–437 (2006).

[CrossRef]

P. J. McCarthy, “Direct analytic model of the L-curve for Tikhonov regularization parameter selection,” Inverse Probl. 19, 643–663 (2003).

[CrossRef]

M. Kandlikar and G. Ramachandran, “Inverse methods for analysing aerosol spectrometer measurements: A Critical Review,” J. Aerosol Sci. 30, 413–437 (1999).

[CrossRef]

P. C. Hansen, “Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems,” Numerical Algorithms 6, 1–35 (1994).

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).

[CrossRef]

P. C. Hansen, T. Sekii, and H. Shibahashi, “The modified truncated SVD method for regularization in general form,” SIAM J. Sci. Stat. Comput. 13, 1142–1150 (1992).

[CrossRef]

P. C. Hansen, “Numerical tools for analysis and solution of Fredholm integral equations of the first kind,” Inverse Probl. 8, 849–872 (1992).

[CrossRef]

A. R. Jones, “Light scattering for particle characterization,” Progr. Energy Combust. Sci. 25, 1–53 (1992).

G. H. Golub and U. von Matt, “Quadratically constrained least squares and quadratic problems,” Numer. Math. 59, 561–580 (1991).

[CrossRef]

P. C. Hansen, “Relations between SVD and GSVD of discrete regularization problems in standard and general form,” Linear Algebra Appl. 141, 165–176 (1990).

[CrossRef]

W. Winklmayr, H. Wang, and W. John, “Adaptation of the Twomey Algorithm to the Inversion of Cascade Impactor Data,” Aerosol Sci. Technol. 13, 322–331 (1990).

[CrossRef]

P. C. Hansen, “Regularization, GSVD and truncated GSVD,” BIT (Nord. Tidskr. Inf.-behandl.) 29, 491–504 (1989).

[CrossRef]

G. R. Markowski, “Improving Twomey’s Algorithm for Inversion of Aerosol Measurement Data,” Aerosol Sci. Technol 7, 127–141 (1987).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints,” ACM Trans. Math. Softw. 10, 282–298 (1984).

[CrossRef]

J. G. Crump and J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1981).

[CrossRef]

G. H. Golub, M. Heath, and H. Wahba, “Generalized cross validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–224 (1979).

[CrossRef]

S. Twomey, “Comparison of constrained linear inversion and an iterative non-linear algorithm applied to the indirect estimation of particle size distributions,” J. Comput. Phys. 18, 188–200 (1975).

[CrossRef]

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101 (1963).

[CrossRef]

D. L. Phillips, “A Technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).

[CrossRef]

A. R. Roig and J. L. Alessandrini, “Particle size distributions from static light scattering with regularized Non-Negative Least Squares Constraints,” Part. Part. Syst. Charact. 23, 431–437 (2006).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

J. G. Crump and J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1981).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints,” ACM Trans. Math. Softw. 10, 282–298 (1984).

[CrossRef]

G. H. Golub and U. von Matt, “Quadratically constrained least squares and quadratic problems,” Numer. Math. 59, 561–580 (1991).

[CrossRef]

G. H. Golub, M. Heath, and H. Wahba, “Generalized cross validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–224 (1979).

[CrossRef]

P. C. Hansen, “Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems,” Numerical Algorithms 6, 1–35 (1994).

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).

[CrossRef]

P. C. Hansen, T. Sekii, and H. Shibahashi, “The modified truncated SVD method for regularization in general form,” SIAM J. Sci. Stat. Comput. 13, 1142–1150 (1992).

[CrossRef]

P. C. Hansen, “Numerical tools for analysis and solution of Fredholm integral equations of the first kind,” Inverse Probl. 8, 849–872 (1992).

[CrossRef]

P. C. Hansen, “Relations between SVD and GSVD of discrete regularization problems in standard and general form,” Linear Algebra Appl. 141, 165–176 (1990).

[CrossRef]

P. C. Hansen, “Regularization, GSVD and truncated GSVD,” BIT (Nord. Tidskr. Inf.-behandl.) 29, 491–504 (1989).

[CrossRef]

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice Hall, 1974).

G. H. Golub, M. Heath, and H. Wahba, “Generalized cross validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–224 (1979).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

W. Winklmayr, H. Wang, and W. John, “Adaptation of the Twomey Algorithm to the Inversion of Cascade Impactor Data,” Aerosol Sci. Technol. 13, 322–331 (1990).

[CrossRef]

A. R. Jones, “Light scattering for particle characterization,” Progr. Energy Combust. Sci. 25, 1–53 (1992).

F. Stout and J. H. Kalivas, “Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts,” J. Chemom. 20, 22–33 (2006).

[CrossRef]

M. Kandlikar and G. Ramachandran, “Inverse methods for analysing aerosol spectrometer measurements: A Critical Review,” J. Aerosol Sci. 30, 413–437 (1999).

[CrossRef]

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice Hall, 1974).

G. R. Markowski, “Improving Twomey’s Algorithm for Inversion of Aerosol Measurement Data,” Aerosol Sci. Technol 7, 127–141 (1987).

[CrossRef]

P. J. McCarthy, “Direct analytic model of the L-curve for Tikhonov regularization parameter selection,” Inverse Probl. 19, 643–663 (2003).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints,” ACM Trans. Math. Softw. 10, 282–298 (1984).

[CrossRef]

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).

[CrossRef]

D. L. Phillips, “A Technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).

[CrossRef]

M. Kandlikar and G. Ramachandran, “Inverse methods for analysing aerosol spectrometer measurements: A Critical Review,” J. Aerosol Sci. 30, 413–437 (1999).

[CrossRef]

A. R. Roig and J. L. Alessandrini, “Particle size distributions from static light scattering with regularized Non-Negative Least Squares Constraints,” Part. Part. Syst. Charact. 23, 431–437 (2006).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints,” ACM Trans. Math. Softw. 10, 282–298 (1984).

[CrossRef]

J. G. Crump and J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1981).

[CrossRef]

P. C. Hansen, T. Sekii, and H. Shibahashi, “The modified truncated SVD method for regularization in general form,” SIAM J. Sci. Stat. Comput. 13, 1142–1150 (1992).

[CrossRef]

P. C. Hansen, T. Sekii, and H. Shibahashi, “The modified truncated SVD method for regularization in general form,” SIAM J. Sci. Stat. Comput. 13, 1142–1150 (1992).

[CrossRef]

F. Stout and J. H. Kalivas, “Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts,” J. Chemom. 20, 22–33 (2006).

[CrossRef]

S. Twomey, “Comparison of constrained linear inversion and an iterative non-linear algorithm applied to the indirect estimation of particle size distributions,” J. Comput. Phys. 18, 188–200 (1975).

[CrossRef]

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101 (1963).

[CrossRef]

G. H. Golub and U. von Matt, “Quadratically constrained least squares and quadratic problems,” Numer. Math. 59, 561–580 (1991).

[CrossRef]

G. H. Golub, M. Heath, and H. Wahba, “Generalized cross validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–224 (1979).

[CrossRef]

W. Winklmayr, H. Wang, and W. John, “Adaptation of the Twomey Algorithm to the Inversion of Cascade Impactor Data,” Aerosol Sci. Technol. 13, 322–331 (1990).

[CrossRef]

W. Winklmayr, H. Wang, and W. John, “Adaptation of the Twomey Algorithm to the Inversion of Cascade Impactor Data,” Aerosol Sci. Technol. 13, 322–331 (1990).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints,” ACM Trans. Math. Softw. 10, 282–298 (1984).

[CrossRef]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints,” ACM Trans. Math. Softw. 10, 282–298 (1984).

[CrossRef]

G. R. Markowski, “Improving Twomey’s Algorithm for Inversion of Aerosol Measurement Data,” Aerosol Sci. Technol 7, 127–141 (1987).

[CrossRef]

W. Winklmayr, H. Wang, and W. John, “Adaptation of the Twomey Algorithm to the Inversion of Cascade Impactor Data,” Aerosol Sci. Technol. 13, 322–331 (1990).

[CrossRef]

J. G. Crump and J. H. Seinfeld, “A new algorithm for inversion of aerosol size distribution data,” Aerosol Sci. Technol. 1, 15–34 (1981).

[CrossRef]

P. C. Hansen, “Regularization, GSVD and truncated GSVD,” BIT (Nord. Tidskr. Inf.-behandl.) 29, 491–504 (1989).

[CrossRef]

P. J. McCarthy, “Direct analytic model of the L-curve for Tikhonov regularization parameter selection,” Inverse Probl. 19, 643–663 (2003).

[CrossRef]

P. C. Hansen, “Numerical tools for analysis and solution of Fredholm integral equations of the first kind,” Inverse Probl. 8, 849–872 (1992).

[CrossRef]

M. Kandlikar and G. Ramachandran, “Inverse methods for analysing aerosol spectrometer measurements: A Critical Review,” J. Aerosol Sci. 30, 413–437 (1999).

[CrossRef]

S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101 (1963).

[CrossRef]

D. L. Phillips, “A Technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962).

[CrossRef]

F. Stout and J. H. Kalivas, “Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts,” J. Chemom. 20, 22–33 (2006).

[CrossRef]

S. Twomey, “Comparison of constrained linear inversion and an iterative non-linear algorithm applied to the indirect estimation of particle size distributions,” J. Comput. Phys. 18, 188–200 (1975).

[CrossRef]

P. C. Hansen, “Relations between SVD and GSVD of discrete regularization problems in standard and general form,” Linear Algebra Appl. 141, 165–176 (1990).

[CrossRef]

G. H. Golub and U. von Matt, “Quadratically constrained least squares and quadratic problems,” Numer. Math. 59, 561–580 (1991).

[CrossRef]

P. C. Hansen, “Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems,” Numerical Algorithms 6, 1–35 (1994).

A. R. Roig and J. L. Alessandrini, “Particle size distributions from static light scattering with regularized Non-Negative Least Squares Constraints,” Part. Part. Syst. Charact. 23, 431–437 (2006).

[CrossRef]

A. R. Jones, “Light scattering for particle characterization,” Progr. Energy Combust. Sci. 25, 1–53 (1992).

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).

[CrossRef]

P. C. Hansen, T. Sekii, and H. Shibahashi, “The modified truncated SVD method for regularization in general form,” SIAM J. Sci. Stat. Comput. 13, 1142–1150 (1992).

[CrossRef]

G. H. Golub, M. Heath, and H. Wahba, “Generalized cross validation as a method for choosing a good ridge parameter,” Technometrics 21, 215–224 (1979).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice Hall, 1974).

Index of Refraction, Technical Note-007 (Duke Scientific Corporation, December 1, 1996).

“Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure” (International Association for the Properties of Water and Steam, 1997).