Abstract

A cross-polarization scheme is presented to filter out the excitation light from the emission spectrum of fluorescent dyes using green light emitting diodes as a light source and a linear charge coupled device as an intensity detector. The excitation light was linearly polarized and was then used to illuminate the fluorescent dyes in the microchannels of a capillary electrophoresis microchip. The detector was shielded by the second polarizer, oriented perpendicular to the excitation light. The fluorescent signals from Rhodamine B dyes were measured in a dilution series with resulting emission signals and four different concentrations of fluorescent dyes were detected simultaneously with the same excitation source and detector. A limit-of-detection of 1 μM was demonstrated for Rhodamine B dye under the optimal conditions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1, 244–248 (1990).
    [CrossRef]
  2. P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels-the Holy Grail in μ-TAS?,” Anal. Bioanal. Chem. 382, 1771–1782 (2005).
    [CrossRef]
  3. A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Anal. Chem. 70, 684–688 (1998).
    [CrossRef]
  4. S. D. Mangru and D. J. Harrison, “Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis,” Electrophoresis 19, 2301–2307 (1998).
    [CrossRef]
  5. H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003).
    [CrossRef]
  6. J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999).
    [CrossRef]
  7. H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005).
    [CrossRef]
  8. S. J. Hart and R. D. Jiji, “A simple, low-cost, remote fiber-optic micro volume fluorescence flowcell for capillary flow-injection analysis,” Anal. Bioanal. Chem. 374, 385–389 (2002).
    [CrossRef]
  9. H. F. Li, J. M. Lin, R. G. Su, K. Uchiyama, and T. Hobo, “A compactly integrated laser-induced fluorescence detector for microchip electrophoresis,” Electrophoresis 25, 1907–1915 (2004).
    [CrossRef]
  10. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
    [CrossRef]
  11. J. Webster, M. Burns, D. Burke, and C. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector,” Anal. Chem. 73, 1622–1626 (2001).
    [CrossRef]
  12. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
    [CrossRef]
  13. M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001).
    [CrossRef]
  14. M. Stjernstrom and J. Roeraade, “Method for fabrication of microfluidic systems in glass,” J. Micromech. Microeng. 8, 33–38 (1998).
    [CrossRef]
  15. X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
    [CrossRef]
  16. N. Xue and W. P. Yan, “A silicon-glass-based microfabricated wide range thermal distribution gas flow meter,” Sens. Actuators A 173, 145–151 (2012).
    [CrossRef]
  17. Edmund Optics (Shenzhen) Co., Ltd., Shenzhen, China. http://www.edmundoptics.com/products/displayproduct.cfm?productid=2342 .
  18. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
    [CrossRef]
  19. F. Shen, M. Yang, Y. Yu, and Q. Kang, “Simultaneous laser-induced fluorescence and contactless-conductivity detection for microfluidic chip,” Chin. Chem. Lett. 19, 1333–1336 (2008).
    [CrossRef]

2012

N. Xue and W. P. Yan, “A silicon-glass-based microfabricated wide range thermal distribution gas flow meter,” Sens. Actuators A 173, 145–151 (2012).
[CrossRef]

2008

F. Shen, M. Yang, Y. Yu, and Q. Kang, “Simultaneous laser-induced fluorescence and contactless-conductivity detection for microfluidic chip,” Chin. Chem. Lett. 19, 1333–1336 (2008).
[CrossRef]

2006

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
[CrossRef]

2005

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels-the Holy Grail in μ-TAS?,” Anal. Bioanal. Chem. 382, 1771–1782 (2005).
[CrossRef]

H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005).
[CrossRef]

2004

H. F. Li, J. M. Lin, R. G. Su, K. Uchiyama, and T. Hobo, “A compactly integrated laser-induced fluorescence detector for microchip electrophoresis,” Electrophoresis 25, 1907–1915 (2004).
[CrossRef]

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

2003

H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003).
[CrossRef]

2002

S. J. Hart and R. D. Jiji, “A simple, low-cost, remote fiber-optic micro volume fluorescence flowcell for capillary flow-injection analysis,” Anal. Bioanal. Chem. 374, 385–389 (2002).
[CrossRef]

2001

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001).
[CrossRef]

J. Webster, M. Burns, D. Burke, and C. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector,” Anal. Chem. 73, 1622–1626 (2001).
[CrossRef]

1999

J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999).
[CrossRef]

1998

A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Anal. Chem. 70, 684–688 (1998).
[CrossRef]

S. D. Mangru and D. J. Harrison, “Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis,” Electrophoresis 19, 2301–2307 (1998).
[CrossRef]

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

M. Stjernstrom and J. Roeraade, “Method for fabrication of microfluidic systems in glass,” J. Micromech. Microeng. 8, 33–38 (1998).
[CrossRef]

1990

A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1, 244–248 (1990).
[CrossRef]

Ahn, S. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Beecher, S.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
[CrossRef]

Benito-Lopez, F.

H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005).
[CrossRef]

Bings, N. H.

J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999).
[CrossRef]

Bradley, D. D. C.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
[CrossRef]

Brahmasandra, S. N.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Burke, D.

J. Webster, M. Burns, D. Burke, and C. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector,” Anal. Chem. 73, 1622–1626 (2001).
[CrossRef]

Burke, D. T.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Burns, M.

J. Webster, M. Burns, D. Burke, and C. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector,” Anal. Chem. 73, 1622–1626 (2001).
[CrossRef]

Burns, M. A.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Cao, W. D.

H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003).
[CrossRef]

Chabinyc, M. L.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001).
[CrossRef]

Chiu, D. T.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001).
[CrossRef]

Christian, J. F.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001).
[CrossRef]

Colyer, C.

J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999).
[CrossRef]

Cornwell, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
[CrossRef]

Dai, Z. P.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

deMello, A. J.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
[CrossRef]

deMello, J. C.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
[CrossRef]

Dittrich, P. S.

P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels-the Holy Grail in μ-TAS?,” Anal. Bioanal. Chem. 382, 1771–1782 (2005).
[CrossRef]

Du, Y. G.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

Gardeniers, H. J. G. E.

H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005).
[CrossRef]

Glazer, A. N.

A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Anal. Chem. 70, 684–688 (1998).
[CrossRef]

Graber, N.

A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1, 244–248 (1990).
[CrossRef]

Handique, K.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Harrison, D. J.

S. D. Mangru and D. J. Harrison, “Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis,” Electrophoresis 19, 2301–2307 (1998).
[CrossRef]

Harrison, J.

J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999).
[CrossRef]

Hart, S. J.

S. J. Hart and R. D. Jiji, “A simple, low-cost, remote fiber-optic micro volume fluorescence flowcell for capillary flow-injection analysis,” Anal. Bioanal. Chem. 374, 385–389 (2002).
[CrossRef]

Heldsinger, D.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Hermes, D. C.

H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005).
[CrossRef]

Hobo, T.

H. F. Li, J. M. Lin, R. G. Su, K. Uchiyama, and T. Hobo, “A compactly integrated laser-induced fluorescence detector for microchip electrophoresis,” Electrophoresis 25, 1907–1915 (2004).
[CrossRef]

Hofmann, O.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
[CrossRef]

Jiji, R. D.

S. J. Hart and R. D. Jiji, “A simple, low-cost, remote fiber-optic micro volume fluorescence flowcell for capillary flow-injection analysis,” Anal. Bioanal. Chem. 374, 385–389 (2002).
[CrossRef]

Johnson, B. N.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Jones, D.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Kang, Q.

F. Shen, M. Yang, Y. Yu, and Q. Kang, “Simultaneous laser-induced fluorescence and contactless-conductivity detection for microfluidic chip,” Chin. Chem. Lett. 19, 1333–1336 (2008).
[CrossRef]

Karger, A. M.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001).
[CrossRef]

Kim, J. S.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Kim, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Krishnan, M.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Lao, K. Q.

A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Anal. Chem. 70, 684–688 (1998).
[CrossRef]

Lee, K. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Lee, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Li, H. F.

H. F. Li, J. M. Lin, R. G. Su, K. Uchiyama, and T. Hobo, “A compactly integrated laser-induced fluorescence detector for microchip electrophoresis,” Electrophoresis 25, 1907–1915 (2004).
[CrossRef]

Li, J. J.

J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999).
[CrossRef]

Lin, B. C.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

Lin, J. M.

H. F. Li, J. M. Lin, R. G. Su, K. Uchiyama, and T. Hobo, “A compactly integrated laser-induced fluorescence detector for microchip electrophoresis,” Electrophoresis 25, 1907–1915 (2004).
[CrossRef]

Liu, D. F.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

Liu, J. F.

H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003).
[CrossRef]

Man, P. M.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Mangru, S. D.

S. D. Mangru and D. J. Harrison, “Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis,” Electrophoresis 19, 2301–2307 (1998).
[CrossRef]

Manz, A.

P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels-the Holy Grail in μ-TAS?,” Anal. Bioanal. Chem. 382, 1771–1782 (2005).
[CrossRef]

A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1, 244–248 (1990).
[CrossRef]

Mastrangelo, C.

J. Webster, M. Burns, D. Burke, and C. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector,” Anal. Chem. 73, 1622–1626 (2001).
[CrossRef]

Mastrangelo, C. H.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Mathies, R. A.

A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Anal. Chem. 70, 684–688 (1998).
[CrossRef]

McDonald, J. C.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001).
[CrossRef]

Mei, X. D.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

Park, J. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Qiu, H. B.

H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003).
[CrossRef]

Raja, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
[CrossRef]

Reinhoudt, D. N.

H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005).
[CrossRef]

Roeraade, J.

M. Stjernstrom and J. Roeraade, “Method for fabrication of microfluidic systems in glass,” J. Micromech. Microeng. 8, 33–38 (1998).
[CrossRef]

Sammarco, T. S.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Shen, F.

F. Shen, M. Yang, Y. Yu, and Q. Kang, “Simultaneous laser-induced fluorescence and contactless-conductivity detection for microfluidic chip,” Chin. Chem. Lett. 19, 1333–1336 (2008).
[CrossRef]

Skinner, C. D.

J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999).
[CrossRef]

Stjernstrom, M.

M. Stjernstrom and J. Roeraade, “Method for fabrication of microfluidic systems in glass,” J. Micromech. Microeng. 8, 33–38 (1998).
[CrossRef]

Stroock, A. D.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001).
[CrossRef]

Su, R. G.

H. F. Li, J. M. Lin, R. G. Su, K. Uchiyama, and T. Hobo, “A compactly integrated laser-induced fluorescence detector for microchip electrophoresis,” Electrophoresis 25, 1907–1915 (2004).
[CrossRef]

Sun, X. H.

H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003).
[CrossRef]

Thibault, P.

J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999).
[CrossRef]

Uchiyama, K.

H. F. Li, J. M. Lin, R. G. Su, K. Uchiyama, and T. Hobo, “A compactly integrated laser-induced fluorescence detector for microchip electrophoresis,” Electrophoresis 25, 1907–1915 (2004).
[CrossRef]

van den Berg, A.

H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005).
[CrossRef]

Verboom, W.

H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005).
[CrossRef]

Wang, C.

J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999).
[CrossRef]

Wang, E. K.

H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003).
[CrossRef]

Wang, H.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

Wang, X.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
[CrossRef]

Webster, J.

J. Webster, M. Burns, D. Burke, and C. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector,” Anal. Chem. 73, 1622–1626 (2001).
[CrossRef]

Webster, J. R.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Wensink, H.

H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005).
[CrossRef]

Whitesides, G. M.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001).
[CrossRef]

Widmer, H.

A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1, 244–248 (1990).
[CrossRef]

Woolley, A. T.

A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Anal. Chem. 70, 684–688 (1998).
[CrossRef]

Wu, D. P.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

Xia, Z. N.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

Xue, N.

N. Xue and W. P. Yan, “A silicon-glass-based microfabricated wide range thermal distribution gas flow meter,” Sens. Actuators A 173, 145–151 (2012).
[CrossRef]

Yan, J. L.

H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003).
[CrossRef]

Yan, W. P.

N. Xue and W. P. Yan, “A silicon-glass-based microfabricated wide range thermal distribution gas flow meter,” Sens. Actuators A 173, 145–151 (2012).
[CrossRef]

Yang, M.

F. Shen, M. Yang, Y. Yu, and Q. Kang, “Simultaneous laser-induced fluorescence and contactless-conductivity detection for microfluidic chip,” Chin. Chem. Lett. 19, 1333–1336 (2008).
[CrossRef]

Yang, X. R.

H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003).
[CrossRef]

Yoon, P. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Yu, Y.

F. Shen, M. Yang, Y. Yu, and Q. Kang, “Simultaneous laser-induced fluorescence and contactless-conductivity detection for microfluidic chip,” Chin. Chem. Lett. 19, 1333–1336 (2008).
[CrossRef]

Zhang, L. P.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

Zhong, R. T.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

Zhou, X. M.

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

Anal. Bioanal. Chem.

P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels-the Holy Grail in μ-TAS?,” Anal. Bioanal. Chem. 382, 1771–1782 (2005).
[CrossRef]

S. J. Hart and R. D. Jiji, “A simple, low-cost, remote fiber-optic micro volume fluorescence flowcell for capillary flow-injection analysis,” Anal. Bioanal. Chem. 374, 385–389 (2002).
[CrossRef]

Anal. Chem.

J. Webster, M. Burns, D. Burke, and C. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector,” Anal. Chem. 73, 1622–1626 (2001).
[CrossRef]

A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Anal. Chem. 70, 684–688 (1998).
[CrossRef]

H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003).
[CrossRef]

J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999).
[CrossRef]

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001).
[CrossRef]

Chin. Chem. Lett.

F. Shen, M. Yang, Y. Yu, and Q. Kang, “Simultaneous laser-induced fluorescence and contactless-conductivity detection for microfluidic chip,” Chin. Chem. Lett. 19, 1333–1336 (2008).
[CrossRef]

Electrophoresis

X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004).
[CrossRef]

S. D. Mangru and D. J. Harrison, “Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis,” Electrophoresis 19, 2301–2307 (1998).
[CrossRef]

H. F. Li, J. M. Lin, R. G. Su, K. Uchiyama, and T. Hobo, “A compactly integrated laser-induced fluorescence detector for microchip electrophoresis,” Electrophoresis 25, 1907–1915 (2004).
[CrossRef]

J. Micromech. Microeng.

M. Stjernstrom and J. Roeraade, “Method for fabrication of microfluidic systems in glass,” J. Micromech. Microeng. 8, 33–38 (1998).
[CrossRef]

Lab Chip

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006).
[CrossRef]

H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005).
[CrossRef]

Nanotechnology

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Science

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998).
[CrossRef]

Sens. Actuators A

N. Xue and W. P. Yan, “A silicon-glass-based microfabricated wide range thermal distribution gas flow meter,” Sens. Actuators A 173, 145–151 (2012).
[CrossRef]

Sens. Actuators B

A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1, 244–248 (1990).
[CrossRef]

Other

Edmund Optics (Shenzhen) Co., Ltd., Shenzhen, China. http://www.edmundoptics.com/products/displayproduct.cfm?productid=2342 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup for green LED-induced fluorescence detection system. The glass-based CE microchip comprised sample reservoir (S), sample waste reservoir (SW), buffer reservoir (B), buffer waste reservoir (BW), detection area (D), injection and separation channels. S was connected to syringe pump to be loaded with fluorescent dyes. All reservoirs were connected to high voltage power supply with platinum wire electrodes to perform the electrophoresis.

Fig. 2.
Fig. 2.

Layout of the microfabricated CE microchip. The detailed view of a single quartet is shown on the left. It is composed of an injection channel, a reference channel, and a variable length of separation channel. Microchannels are 60 μm deep and 100 μm wide, respectively.

Fig. 3.
Fig. 3.

Schematic illustration of sample injection and separation modes on designed CE microchip. The detailed views of injection and separation process are shown on the right. B indicates buffer reservior, S indicates sample reservoir, SW indicates sample waste reservoir, and D indicates detection area.

Fig. 4.
Fig. 4.

Stability of LEDs emission at different driving voltages where 1 mM Rhodamine B dye in 2×TBE buffer solution (pH 8.3) was filled into the microchannels as analyte for study. The power supply output increased from 3.0 to 4.2 V every three minutes at a step of 0.2 V.

Fig. 5.
Fig. 5.

Photograph of the excitation light when the two polarizers are placed in parallel (a) (i.e., without cross-polarization) and perpendicular (b) (cross-polarization, the excitation light is masked clearly) to each other. (c) Response curve of the output fluorescence intensity versus the relative polarization angle of the two polarizers with 1 mM Rhodamine B dye using the LEDs excitation light as input.

Fig. 6.
Fig. 6.

Fluorescence detection of 1 mM Rhodamine B dye in 2×TBE buffer solution (pH 8.3) with three different pinhole diameters (from left to right).

Fig. 7.
Fig. 7.

Electrophoretic separation detection result with different concentrations of Rhodamine B sample solution from 1 mM to 1 μM. Analytical conditions: 2×TBE running solution (pH 8.3), the sample loading operation of 600 V for 20 s, and the separation voltage of 800 V.

Fig. 8.
Fig. 8.

Relative fluorescence intensity as a function of dye concentration for a dilution series of Rhodamine B from 1 mM to 1 μM with LED-induced fluorescence detection system. The square shapes represent fluorescence response measured approximately one week apart with reassembled setups. Injection and separation conditions were the same as in Fig. 7.

Metrics