Abstract

Plasmonic nanodimers facilitate electromagnetic hotspots at their gap junction. By loading these gap junctions with nanomaterials, the plasmonic properties of nanodimer can be varied. In this study, we bridged the gap junction of gold (Au) nanocylinder dimer with palladium (Pd), and numerically evaluated the plasmonic properties of the designed nanostructure. We simulated the far-field extinction spectra of Pd bridged Au nanocylinder dimer, and identified the dipole and quadrupole plasmon modes at 839 and 578 nm, respectively. By varying the geometrical parameters of the Pd bridge, we revealed the ability to tune the dipolar plasmon resonance of the bridged dimer. Further, we exploited the hydrogen sensitivity of Pd bridge to harness the bridged-Au dimer as nanoplasmonic hydrogen sensor. Such nano-optical detection platforms have minimal spatial footprint and can be further harnessed for chip-based plasmonic sensing.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [CrossRef]
  2. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
    [CrossRef]
  3. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [CrossRef]
  4. Y.-F. Chau, H.-H. Yeh, C.-C. Liao, H.-F. Ho, C.-Y. Liu, and D. P. Tsai, “Controlling surface plasmon of several pair arrays of silver-shell nanocylinders,” Appl. Opt. 49, 1163–1169 (2010).
    [CrossRef]
  5. Y.-F. Chau, H.-H. Yeh, and D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair,” Appl. Opt. 47, 5557–5561 (2008).
    [CrossRef]
  6. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
    [CrossRef]
  7. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
    [CrossRef]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef]
  9. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
    [CrossRef]
  10. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113, 1946–1953 (2009).
    [CrossRef]
  11. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
    [CrossRef]
  12. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
    [CrossRef]
  13. N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10, 1741–1746 (2010).
    [CrossRef]
  14. O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
    [CrossRef]
  15. S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
    [CrossRef]
  16. C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
    [CrossRef]
  17. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
    [CrossRef]
  18. S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
    [CrossRef]
  19. Y. F. Chau, Y. J. Lin, and D. P. Tsai, “Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars,” Opt. Express 18, 3510–3518 (2010).
    [CrossRef]
  20. N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011).
    [CrossRef]
  21. A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
    [CrossRef]
  22. A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
    [CrossRef]
  23. A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
    [CrossRef]
  24. A. Alu and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571–583 (2006).
    [CrossRef]
  25. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
    [CrossRef]
  26. J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
    [CrossRef]
  27. Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem. 76, 6321–6326 (2004).
    [CrossRef]
  28. J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005).
    [CrossRef]
  29. D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. 20, 4724–4727 (2008).
    [CrossRef]
  30. Q. Yan, S. Tao, and H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77, 953–961 (2009).
    [CrossRef]
  31. M. Ando, “Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air,” Trends Anal. Chem. 25, 937–948 (2006).
    [CrossRef]
  32. A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17, 1124–1128 (2006).
    [CrossRef]
  33. M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
    [CrossRef]
  34. D. Nau, A. Seidel, R. B. Orzekowsky, S. H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett. 35, 3150–3152 (2010).
    [CrossRef]
  35. G. O. Cavalcanti, E. Fontana, and S. C. Oliveira, “Hydrogen detection using surface plasmon resonance in palladium films,” in Proceedings of SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2009 (IEEE, 2009), pp. 312–315.
  36. C. Langhammer, I. Zoric, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7, 3122–3127 (2007).
    [CrossRef]
  37. E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95, 133504 (2009).
    [CrossRef]
  38. C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zoric, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10, 3529–3538 (2010).
    [CrossRef]
  39. S. Mikuriya, E. Maeda, M. Shuzo, I. Yamada, and J. J. Delaunay, “Hydrogen sensing with a rectangular lattice of sub-wavelength holes in palladium,” IEEJ Trans. Sensors Micromachines 130, 317–320 (2010).
    [CrossRef]
  40. D. Monzon-Hernandez, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
    [CrossRef]
  41. K. Von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
    [CrossRef]
  42. W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496, 189–196 (2006).
    [CrossRef]
  43. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science 293, 2227–2231 (2001).
    [CrossRef]
  44. S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, “Fabrication of palladium nanotubes and their application in hydrogen sensing,” Chem. Mater. 17, 3445–3450 (2005).
    [CrossRef]
  45. Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors,” Nanotechnology 18, 345502 (2007).
    [CrossRef]
  46. K. J. Jeon, J. M. Lee, E. Lee, and W. Lee, “Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography,” Nanotechnology 20, 135502 (2009).
    [CrossRef]
  47. P. Offermans, H. D. Tong, C. J. M. Van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett. 94, 223110 (2009).
    [CrossRef]
  48. C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
    [CrossRef]
  49. J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
    [CrossRef]
  50. A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103, 113111 (2008).
    [CrossRef]
  51. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [CrossRef]
  52. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
    [CrossRef]
  53. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
    [CrossRef]
  54. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  55. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
    [CrossRef]
  56. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
    [CrossRef]

2011 (4)

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011).
[CrossRef]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef]

2010 (11)

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

Y. F. Chau, Y. J. Lin, and D. P. Tsai, “Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars,” Opt. Express 18, 3510–3518 (2010).
[CrossRef]

Y.-F. Chau, H.-H. Yeh, C.-C. Liao, H.-F. Ho, C.-Y. Liu, and D. P. Tsai, “Controlling surface plasmon of several pair arrays of silver-shell nanocylinders,” Appl. Opt. 49, 1163–1169 (2010).
[CrossRef]

D. Nau, A. Seidel, R. B. Orzekowsky, S. H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett. 35, 3150–3152 (2010).
[CrossRef]

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zoric, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10, 3529–3538 (2010).
[CrossRef]

S. Mikuriya, E. Maeda, M. Shuzo, I. Yamada, and J. J. Delaunay, “Hydrogen sensing with a rectangular lattice of sub-wavelength holes in palladium,” IEEJ Trans. Sensors Micromachines 130, 317–320 (2010).
[CrossRef]

D. Monzon-Hernandez, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
[CrossRef]

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10, 1741–1746 (2010).
[CrossRef]

O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef]

2009 (6)

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113, 1946–1953 (2009).
[CrossRef]

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95, 133504 (2009).
[CrossRef]

K. J. Jeon, J. M. Lee, E. Lee, and W. Lee, “Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography,” Nanotechnology 20, 135502 (2009).
[CrossRef]

P. Offermans, H. D. Tong, C. J. M. Van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett. 94, 223110 (2009).
[CrossRef]

Q. Yan, S. Tao, and H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77, 953–961 (2009).
[CrossRef]

2008 (11)

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. 20, 4724–4727 (2008).
[CrossRef]

Y.-F. Chau, H.-H. Yeh, and D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair,” Appl. Opt. 47, 5557–5561 (2008).
[CrossRef]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[CrossRef]

A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[CrossRef]

A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

2007 (3)

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

C. Langhammer, I. Zoric, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7, 3122–3127 (2007).
[CrossRef]

Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors,” Nanotechnology 18, 345502 (2007).
[CrossRef]

2006 (5)

M. Ando, “Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air,” Trends Anal. Chem. 25, 937–948 (2006).
[CrossRef]

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17, 1124–1128 (2006).
[CrossRef]

A. Alu and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571–583 (2006).
[CrossRef]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef]

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496, 189–196 (2006).
[CrossRef]

2005 (3)

S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, “Fabrication of palladium nanotubes and their application in hydrogen sensing,” Chem. Mater. 17, 3445–3450 (2005).
[CrossRef]

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005).
[CrossRef]

2004 (4)

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem. 76, 6321–6326 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

2003 (3)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[CrossRef]

2001 (2)

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science 293, 2227–2231 (2001).
[CrossRef]

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

1999 (2)

K. Von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
[CrossRef]

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Abb, M.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10, 1741–1746 (2010).
[CrossRef]

Aizpurua, J.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10, 1741–1746 (2010).
[CrossRef]

O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef]

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Alu, A.

A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[CrossRef]

A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

A. Alu and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571–583 (2006).
[CrossRef]

Ando, M.

M. Ando, “Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air,” Trends Anal. Chem. 25, 937–948 (2006).
[CrossRef]

Andres, M. V.

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Atay, T.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

Atkinson, A. L.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[CrossRef]

Ausman, L. K.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Azofeifa, D. E.

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496, 189–196 (2006).
[CrossRef]

Bachelier, G.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

Benter, T.

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science 293, 2227–2231 (2001).
[CrossRef]

Berkovitch, N.

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011).
[CrossRef]

Bonnet, C.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

Borisov, A. G.

O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef]

Bosnick, K.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[CrossRef]

Brandl, D. W.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Brongersma, S. H.

P. Offermans, H. D. Tong, C. J. M. Van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett. 94, 223110 (2009).
[CrossRef]

Broyer, M.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

Brus, L.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[CrossRef]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[CrossRef]

Bryant, G. W.

Carpenter, M. A.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem. 76, 6321–6326 (2004).
[CrossRef]

Cavalcanti, G. O.

G. O. Cavalcanti, E. Fontana, and S. C. Oliveira, “Hydrogen detection using surface plasmon resonance in palladium films,” in Proceedings of SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2009 (IEEE, 2009), pp. 312–315.

Chang, W. S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Chau, Y. F.

Chau, Y.-F.

Chen, F. F.

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Chen, Y.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

Chen, Z. H.

Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors,” Nanotechnology 18, 345502 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cioffi, N.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

Clark, N.

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496, 189–196 (2006).
[CrossRef]

Clemens, B. M.

C. Langhammer, I. Zoric, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7, 3122–3127 (2007).
[CrossRef]

Cottancin, E.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

Craik, C. S.

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Crego-Calama, M.

P. Offermans, H. D. Tong, C. J. M. Van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett. 94, 223110 (2009).
[CrossRef]

Cruz, J. L.

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

D’Orazio, A.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

de Abajo, F. J. Garcia

De Ceglia, D.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

De Sario, M.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

Deb, S.

Delaunay, J. J.

S. Mikuriya, E. Maeda, M. Shuzo, I. Yamada, and J. J. Delaunay, “Hydrogen sensing with a rectangular lattice of sub-wavelength holes in palladium,” IEEJ Trans. Sensors Micromachines 130, 317–320 (2010).
[CrossRef]

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95, 133504 (2009).
[CrossRef]

Diez, A.

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

Duine, P. A.

K. Von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
[CrossRef]

Elboudwarej, O.

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Ellman, J. A.

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

El-Sayed, M. A.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113, 1946–1953 (2009).
[CrossRef]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

Endo, K.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95, 133504 (2009).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[CrossRef]

A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

A. Alu and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571–583 (2006).
[CrossRef]

Escobar, D. M.

D. Monzon-Hernandez, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

Favier, F.

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science 293, 2227–2231 (2001).
[CrossRef]

Fontana, E.

G. O. Cavalcanti, E. Fontana, and S. C. Oliveira, “Hydrogen detection using surface plasmon resonance in palladium films,” in Proceedings of SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2009 (IEEE, 2009), pp. 312–315.

Ghoshal, A.

A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef]

D. Nau, A. Seidel, R. B. Orzekowsky, S. H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett. 35, 3150–3152 (2010).
[CrossRef]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

Grillet, N.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

Guo, B.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

Hafner, J. H.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Halas, N. J.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

Hales, N. R.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef]

Hernandez, L. I.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Ho, H.-F.

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Hua, L. Z.

S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, “Fabrication of palladium nanotubes and their application in hydrogen sensing,” Chem. Mater. 17, 3445–3450 (2005).
[CrossRef]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

Jain, P. K.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

Jeon, K. J.

K. J. Jeon, J. M. Lee, E. Lee, and W. Lee, “Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography,” Nanotechnology 20, 135502 (2009).
[CrossRef]

Jiang, J.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[CrossRef]

Jie, J. S.

Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors,” Nanotechnology 18, 345502 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kalim, S.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

Kasemo, B.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zoric, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10, 3529–3538 (2010).
[CrossRef]

C. Langhammer, I. Zoric, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7, 3122–3127 (2007).
[CrossRef]

Khoury, C. G.

C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
[CrossRef]

Kik, P. G.

A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

Knight, M. W.

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Kwok, W. K.

S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, “Fabrication of palladium nanotubes and their application in hydrogen sensing,” Chem. Mater. 17, 3445–3450 (2005).
[CrossRef]

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Langhammer, C.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zoric, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10, 3529–3538 (2010).
[CrossRef]

C. Langhammer, I. Zoric, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7, 3122–3127 (2007).
[CrossRef]

Large, N.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10, 1741–1746 (2010).
[CrossRef]

Larsson, E. M.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zoric, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10, 3529–3538 (2010).
[CrossRef]

Lassiter, J. B.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Lee, C. S.

Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors,” Nanotechnology 18, 345502 (2007).
[CrossRef]

Lee, E.

K. J. Jeon, J. M. Lee, E. Lee, and W. Lee, “Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography,” Nanotechnology 20, 135502 (2009).
[CrossRef]

Lee, J. M.

K. J. Jeon, J. M. Lee, E. Lee, and W. Lee, “Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography,” Nanotechnology 20, 135502 (2009).
[CrossRef]

Lee, S. H.

Lee, S. T.

Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors,” Nanotechnology 18, 345502 (2007).
[CrossRef]

Lee, W.

K. J. Jeon, J. M. Lee, E. Lee, and W. Lee, “Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography,” Nanotechnology 20, 135502 (2009).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Lerme, J.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

Letant, S. E.

D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. 20, 4724–4727 (2008).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Li, S.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[CrossRef]

Liao, C.-C.

Lin, Y. J.

Link, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Liphardt, J.

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Liu, C.-Y.

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef]

Luna-Moreno, D.

D. Monzon-Hernandez, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

Luo, L. B.

Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors,” Nanotechnology 18, 345502 (2007).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Maeda, E.

S. Mikuriya, E. Maeda, M. Shuzo, I. Yamada, and J. J. Delaunay, “Hydrogen sensing with a rectangular lattice of sub-wavelength holes in palladium,” IEEJ Trans. Sensors Micromachines 130, 317–320 (2010).
[CrossRef]

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95, 133504 (2009).
[CrossRef]

Mahmoud, M.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113, 1946–1953 (2009).
[CrossRef]

Maillard, M.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[CrossRef]

Marhaba, S.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

Marin, E.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17, 1124–1128 (2006).
[CrossRef]

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

McMahon, J. M.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[CrossRef]

Merken, P.

P. Offermans, H. D. Tong, C. J. M. Van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett. 94, 223110 (2009).
[CrossRef]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[CrossRef]

Mikuriya, S.

S. Mikuriya, E. Maeda, M. Shuzo, I. Yamada, and J. J. Delaunay, “Hydrogen sensing with a rectangular lattice of sub-wavelength holes in palladium,” IEEJ Trans. Sensors Micromachines 130, 317–320 (2010).
[CrossRef]

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95, 133504 (2009).
[CrossRef]

Monzon-Hernandez, D.

D. Monzon-Hernandez, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005).
[CrossRef]

Mukherjee, B.

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Murali, R.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113, 1946–1953 (2009).
[CrossRef]

Muskens, O. L.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10, 1741–1746 (2010).
[CrossRef]

Nau, D.

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[CrossRef]

Nordlander, P.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Norton, S. J.

C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
[CrossRef]

Nurmikko, A. V.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

Offermans, P.

P. Offermans, H. D. Tong, C. J. M. Van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett. 94, 223110 (2009).
[CrossRef]

Oliveira, S. C.

G. O. Cavalcanti, E. Fontana, and S. C. Oliveira, “Hydrogen detection using surface plasmon resonance in palladium films,” in Proceedings of SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2009 (IEEE, 2009), pp. 312–315.

Orenstein, M.

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011).
[CrossRef]

Orzekowsky, R. B.

Ota, S.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Pellarin, M.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

Penner, R. M.

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science 293, 2227–2231 (2001).
[CrossRef]

Perez-Gonzalez, O.

O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef]

Petruzzelli, V.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

Pinchuk, A. O.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Prudenzano, F.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

Ratto, T. V.

D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. 20, 4724–4727 (2008).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Reinhard, B. M.

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Rhodes, C.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

Rojas, I.

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496, 189–196 (2006).
[CrossRef]

Romero, I.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef]

Rosa-Bauza, Y. T.

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Rubin, M.

K. Von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
[CrossRef]

Rydh, A.

S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, “Fabrication of palladium nanotubes and their application in hydrogen sensing,” Chem. Mater. 17, 3445–3450 (2005).
[CrossRef]

Ryu, J.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

Scalora, M.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

Schatz, G. C.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef]

Seidel, A.

Sevryugina, Y.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem. 76, 6321–6326 (2004).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Shuman, M. A.

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Shuzo, M.

S. Mikuriya, E. Maeda, M. Shuzo, I. Yamada, and J. J. Delaunay, “Hydrogen sensing with a rectangular lattice of sub-wavelength holes in palladium,” IEEJ Trans. Sensors Micromachines 130, 317–320 (2010).
[CrossRef]

Sirbuly, D. J.

D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. 20, 4724–4727 (2008).
[CrossRef]

Song, J. H.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

Sonnichsen, C.

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Su, K.-H.

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Suda, A.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95, 133504 (2009).
[CrossRef]

Sun, C.

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Tabor, C.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113, 1946–1953 (2009).
[CrossRef]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef]

Tao, S.

Q. Yan, S. Tao, and H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77, 953–961 (2009).
[CrossRef]

Teitell, M. A.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

Toghiani, H.

Q. Yan, S. Tao, and H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77, 953–961 (2009).
[CrossRef]

Tong, H. D.

P. Offermans, H. D. Tong, C. J. M. Van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett. 94, 223110 (2009).
[CrossRef]

Trevisi, S.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

Trouillet, A.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17, 1124–1128 (2006).
[CrossRef]

Tsai, D. P.

Valentine, J.

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Van Rijn, C. J. M.

P. Offermans, H. D. Tong, C. J. M. Van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett. 94, 223110 (2009).
[CrossRef]

Vargas, W. E.

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496, 189–196 (2006).
[CrossRef]

Veillas, C.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17, 1124–1128 (2006).
[CrossRef]

Vialle, J. L.

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

Villatoro, J.

D. Monzon-Hernandez, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005).
[CrossRef]

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

Vincenti, M. A.

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

Vo-Dinh, T.

C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
[CrossRef]

Von Rottkay, K.

K. Von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
[CrossRef]

Walter, E. C.

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science 293, 2227–2231 (2001).
[CrossRef]

Wang, H.

Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors,” Nanotechnology 18, 345502 (2007).
[CrossRef]

Wang, H. H.

S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, “Fabrication of palladium nanotubes and their application in hydrogen sensing,” Chem. Mater. 17, 3445–3450 (2005).
[CrossRef]

Wang, S.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

Welch, D.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem. 76, 6321–6326 (2004).
[CrossRef]

Welp, U.

S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, “Fabrication of palladium nanotubes and their application in hydrogen sensing,” Chem. Mater. 17, 3445–3450 (2005).
[CrossRef]

Xia, H.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem. 76, 6321–6326 (2004).
[CrossRef]

Xiong, Y.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

Yamada, I.

S. Mikuriya, E. Maeda, M. Shuzo, I. Yamada, and J. J. Delaunay, “Hydrogen sensing with a rectangular lattice of sub-wavelength holes in palladium,” IEEJ Trans. Sensors Micromachines 130, 317–320 (2010).
[CrossRef]

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95, 133504 (2009).
[CrossRef]

Yan, Q.

Q. Yan, S. Tao, and H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77, 953–961 (2009).
[CrossRef]

Yeh, H.-H.

Yu, S.

S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, “Fabrication of palladium nanotubes and their application in hydrogen sensing,” Chem. Mater. 17, 3445–3450 (2005).
[CrossRef]

Zabala, N.

O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef]

Zach, M. P.

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science 293, 2227–2231 (2001).
[CrossRef]

Zeng, L.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

Zhang, X.

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Zhao, J.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Zhao, Z.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem. 76, 6321–6326 (2004).
[CrossRef]

Zoric, I.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zoric, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10, 3529–3538 (2010).
[CrossRef]

C. Langhammer, I. Zoric, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7, 3122–3127 (2007).
[CrossRef]

Acc. Chem. Res. (1)

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).
[CrossRef]

ACS Nano (1)

C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010).
[CrossRef]

Adv. Mater. (1)

D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. 20, 4724–4727 (2008).
[CrossRef]

Anal. Chem. (1)

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem. 76, 6321–6326 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

P. Offermans, H. D. Tong, C. J. M. Van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett. 94, 223110 (2009).
[CrossRef]

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95, 133504 (2009).
[CrossRef]

Chem. Mater. (1)

S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, “Fabrication of palladium nanotubes and their application in hydrogen sensing,” Chem. Mater. 17, 3445–3450 (2005).
[CrossRef]

Chem. Rev. (1)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Electron. Lett. (1)

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

IEEJ Trans. Sensors Micromachines (1)

S. Mikuriya, E. Maeda, M. Shuzo, I. Yamada, and J. J. Delaunay, “Hydrogen sensing with a rectangular lattice of sub-wavelength holes in palladium,” IEEJ Trans. Sensors Micromachines 130, 317–320 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[CrossRef]

J. Appl. Phys. (3)

K. Von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999).
[CrossRef]

A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008).
[CrossRef]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113, 1946–1953 (2009).
[CrossRef]

J. Phys. Chem. B (1)

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003).
[CrossRef]

J. Phys. Chem. C (1)

S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17, 1124–1128 (2006).
[CrossRef]

Nano Lett. (11)

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[CrossRef]

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011).
[CrossRef]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10, 1741–1746 (2010).
[CrossRef]

O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010).
[CrossRef]

S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011).
[CrossRef]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

C. Langhammer, I. Zoric, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7, 3122–3127 (2007).
[CrossRef]

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zoric, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10, 3529–3538 (2010).
[CrossRef]

Nanotechnology (3)

Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors,” Nanotechnology 18, 345502 (2007).
[CrossRef]

K. J. Jeon, J. M. Lee, E. Lee, and W. Lee, “Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography,” Nanotechnology 20, 135502 (2009).
[CrossRef]

C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
[CrossRef]

Nat. Biotechnol. (1)

C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef]

Nat. Photon. (1)

A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008).
[CrossRef]

New J. Phys. (1)

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef]

Science (1)

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science 293, 2227–2231 (2001).
[CrossRef]

Sens. Actuators B (1)

D. Monzon-Hernandez, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010).
[CrossRef]

Talanta (1)

Q. Yan, S. Tao, and H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77, 953–961 (2009).
[CrossRef]

Thin Solid Films (1)

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496, 189–196 (2006).
[CrossRef]

Trends Anal. Chem. (1)

M. Ando, “Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air,” Trends Anal. Chem. 25, 937–948 (2006).
[CrossRef]

Other (1)

G. O. Cavalcanti, E. Fontana, and S. C. Oliveira, “Hydrogen detection using surface plasmon resonance in palladium films,” in Proceedings of SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2009 (IEEE, 2009), pp. 312–315.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Geometry of Pd bridged Au nanocylinder dimer used in the simulation. Radius of each Au nanocylinder = 50 nm ; refractive index of glass = 1.5 ; l and w are variable length and width of Pd bridge. The arrows E and k represent electric field polarization and propagation direction of incident electromagnetic field, respectively.

Fig. 2.
Fig. 2.

(a) Extinction spectra of Pd bridged Au nanodimer without and with Pd bridge. Near-field optical simulation map and field distribution of Au nanodimer (b) without Pd bridge, (c) with Pd bridge. The dotted line in near-field maps of (b) and (c) represents the plotted arc length.

Fig. 3.
Fig. 3.

Tuning the dipolar plasmon mode of Pd bridged Au nanodimer by varying (a) width w and (b) length l of Pd bridge. The values of l = 5 nm and w = 20 nm were kept constant in (a) and (b), respectively.

Fig. 4.
Fig. 4.

Far-field extinction spectra of Pd bridge Au nanocylinder dimer for various values of hydrogen concentration. The inset shows the variation of dipolar plasmon mode as a function of hydrogen concentration.

Metrics