T. Upton, D. Verhoeven, and D. Hudgins, “High-resolution computed tomography of a turbulent reacting flow,” Exp. Fluids 50, 125–134 (2011).

[CrossRef]

B. Zhou, J. Zhang, and S. Wang, “Reconstruction of flame temperature field with optical sectioning method,” IET Image Process. 5, 382–393 (2011).

[CrossRef]

D. Veynate, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).

[CrossRef]

Z. Gut and P. Wolanski, “Flame imaging using 3D electrical capacitance tomography,” Combust. Sci. Technol. 182, 1580–1585 (2010).

[CrossRef]

G. Gilabert and G. Lu, “Three-dimensional tomographic reconstruction of the luminosity distribution of a combustion flame,” IEEE Trans. Instrum. Meas. 56, 1300–1306 (2007).

[CrossRef]

J. W. Shaevitz and D. A. Fletcher, “Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function,” J. Opt. Soc. Am. 24, 2622–2627 (2007).

[CrossRef]

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).

[CrossRef]

A. N. Karpetis and R. S. Barlow, “Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames,” Proc. Combust. Inst. 30, 665–672 (2005).

[CrossRef]

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54, 1417–1421 (2005).

[CrossRef]

H. C. Bheemul, G. Lu, and Y. Yan, “Digital imaging-based three-dimensional characterization of flame front structures in a turbulent flame,” IEEE Trans. Instrum. Meas. 54, 1073–1078 (2005).

[CrossRef]

Y. M. Wang, H. B. Wang, F. H. Li, L. S. Jia, and X. L. Chen, “Maximum entropy image deconvolution applied to structure determination for crystal Nd1.85Ce0.15CuO4-δ,” Micron 36, 393–400 (2005).

[CrossRef]

H. C. Bheemul, G. Lu, and Y. Yan, “Three-dimensional visualization and quantitative characterization of gaseous flames,” Meas. Sci. Technol. 13, 1643–1650 (2002).

[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, K. T. Walsh, M. B. Long, and M. D. Smooke, “CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame,” Combust. Flame 122, 172–175 (2000).

[CrossRef]

B. A. van der Wege, C. J. O’Brien, and S. Hochgreb, “Quantitative shearography in axisymmetric gas temperature measurements,” Opt. Lasers Eng. 31, 21–39 (1999).

[CrossRef]

F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, “The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields,” Meas. Sci. Technol. 10, 1240–1246 (1999).

[CrossRef]

J. H. Chen and H. G. Im, “Correlation of flame speed with stretch in turbulent premixed methane/air flames,” Proc. Combust. Inst. 27, 819–826 (1998).

J. C. Broda, S. Seo, R. J. Santoro, G. Shirhattikar, and V. Yang, “An experimental study of combustion dynamics of a premixed swirl injector,” Proc. Combust. Inst. 27, 1849–1856 (1998).

D. Veynante, J. Piana, J. M. Duclos, and C. Martel, “Experimental analysis of flame surface density models for premixed turbulent combustion,” Proc. Combust. Inst. 26, 413–420 (1996).

S. F. Gull and J. Skilling, “Maximum entropy method in image processing,” IEE Proc. F 131, 646–659 (1984).

[CrossRef]

J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Trans. Inf. Theory 26, 26–37 (1980).

[CrossRef]

R. K. Bryan and J. Skilling, “Deconvolution by maximum entropy, as illustrated by application to the jet of M87,” Mon. Not. R. Astron. Soc. 191, 69–79 (1980).

F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, “The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields,” Meas. Sci. Technol. 10, 1240–1246 (1999).

[CrossRef]

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).

[CrossRef]

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).

[CrossRef]

A. N. Karpetis and R. S. Barlow, “Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames,” Proc. Combust. Inst. 30, 665–672 (2005).

[CrossRef]

H. C. Bheemul, G. Lu, and Y. Yan, “Digital imaging-based three-dimensional characterization of flame front structures in a turbulent flame,” IEEE Trans. Instrum. Meas. 54, 1073–1078 (2005).

[CrossRef]

H. C. Bheemul, G. Lu, and Y. Yan, “Three-dimensional visualization and quantitative characterization of gaseous flames,” Meas. Sci. Technol. 13, 1643–1650 (2002).

[CrossRef]

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54, 1417–1421 (2005).

[CrossRef]

J. C. Broda, S. Seo, R. J. Santoro, G. Shirhattikar, and V. Yang, “An experimental study of combustion dynamics of a premixed swirl injector,” Proc. Combust. Inst. 27, 1849–1856 (1998).

R. K. Bryan and J. Skilling, “Deconvolution by maximum entropy, as illustrated by application to the jet of M87,” Mon. Not. R. Astron. Soc. 191, 69–79 (1980).

J. H. Chen and H. G. Im, “Correlation of flame speed with stretch in turbulent premixed methane/air flames,” Proc. Combust. Inst. 27, 819–826 (1998).

Y. M. Wang, H. B. Wang, F. H. Li, L. S. Jia, and X. L. Chen, “Maximum entropy image deconvolution applied to structure determination for crystal Nd1.85Ce0.15CuO4-δ,” Micron 36, 393–400 (2005).

[CrossRef]

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54, 1417–1421 (2005).

[CrossRef]

T. J. Cornwell and K. F. Evans, “A simple maximum entropy deconvolution algorithm,” Astron. Astrophys. 143, 77–83 (1985).

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, K. T. Walsh, M. B. Long, and M. D. Smooke, “CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame,” Combust. Flame 122, 172–175 (2000).

[CrossRef]

D. Veynate, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).

[CrossRef]

D. Veynante, J. Piana, J. M. Duclos, and C. Martel, “Experimental analysis of flame surface density models for premixed turbulent combustion,” Proc. Combust. Inst. 26, 413–420 (1996).

T. J. Cornwell and K. F. Evans, “A simple maximum entropy deconvolution algorithm,” Astron. Astrophys. 143, 77–83 (1985).

J. W. Shaevitz and D. A. Fletcher, “Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function,” J. Opt. Soc. Am. 24, 2622–2627 (2007).

[CrossRef]

G. Gilabert and G. Lu, “Three-dimensional tomographic reconstruction of the luminosity distribution of a combustion flame,” IEEE Trans. Instrum. Meas. 56, 1300–1306 (2007).

[CrossRef]

S. F. Gull and J. Skilling, “Maximum entropy method in image processing,” IEE Proc. F 131, 646–659 (1984).

[CrossRef]

Z. Gut and P. Wolanski, “Flame imaging using 3D electrical capacitance tomography,” Combust. Sci. Technol. 182, 1580–1585 (2010).

[CrossRef]

D. Veynate, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).

[CrossRef]

B. A. van der Wege, C. J. O’Brien, and S. Hochgreb, “Quantitative shearography in axisymmetric gas temperature measurements,” Opt. Lasers Eng. 31, 21–39 (1999).

[CrossRef]

T. Upton, D. Verhoeven, and D. Hudgins, “High-resolution computed tomography of a turbulent reacting flow,” Exp. Fluids 50, 125–134 (2011).

[CrossRef]

F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, “The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields,” Meas. Sci. Technol. 10, 1240–1246 (1999).

[CrossRef]

J. H. Chen and H. G. Im, “Correlation of flame speed with stretch in turbulent premixed methane/air flames,” Proc. Combust. Inst. 27, 819–826 (1998).

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, K. T. Walsh, M. B. Long, and M. D. Smooke, “CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame,” Combust. Flame 122, 172–175 (2000).

[CrossRef]

Y. M. Wang, H. B. Wang, F. H. Li, L. S. Jia, and X. L. Chen, “Maximum entropy image deconvolution applied to structure determination for crystal Nd1.85Ce0.15CuO4-δ,” Micron 36, 393–400 (2005).

[CrossRef]

J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Trans. Inf. Theory 26, 26–37 (1980).

[CrossRef]

A. N. Karpetis and R. S. Barlow, “Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames,” Proc. Combust. Inst. 30, 665–672 (2005).

[CrossRef]

F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, “The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields,” Meas. Sci. Technol. 10, 1240–1246 (1999).

[CrossRef]

F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, “The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields,” Meas. Sci. Technol. 10, 1240–1246 (1999).

[CrossRef]

Y. M. Wang, H. B. Wang, F. H. Li, L. S. Jia, and X. L. Chen, “Maximum entropy image deconvolution applied to structure determination for crystal Nd1.85Ce0.15CuO4-δ,” Micron 36, 393–400 (2005).

[CrossRef]

D. Veynate, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).

[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, K. T. Walsh, M. B. Long, and M. D. Smooke, “CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame,” Combust. Flame 122, 172–175 (2000).

[CrossRef]

G. Gilabert and G. Lu, “Three-dimensional tomographic reconstruction of the luminosity distribution of a combustion flame,” IEEE Trans. Instrum. Meas. 56, 1300–1306 (2007).

[CrossRef]

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54, 1417–1421 (2005).

[CrossRef]

H. C. Bheemul, G. Lu, and Y. Yan, “Digital imaging-based three-dimensional characterization of flame front structures in a turbulent flame,” IEEE Trans. Instrum. Meas. 54, 1073–1078 (2005).

[CrossRef]

H. C. Bheemul, G. Lu, and Y. Yan, “Three-dimensional visualization and quantitative characterization of gaseous flames,” Meas. Sci. Technol. 13, 1643–1650 (2002).

[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, K. T. Walsh, M. B. Long, and M. D. Smooke, “CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame,” Combust. Flame 122, 172–175 (2000).

[CrossRef]

D. Veynante, J. Piana, J. M. Duclos, and C. Martel, “Experimental analysis of flame surface density models for premixed turbulent combustion,” Proc. Combust. Inst. 26, 413–420 (1996).

F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, “The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields,” Meas. Sci. Technol. 10, 1240–1246 (1999).

[CrossRef]

F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, “The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields,” Meas. Sci. Technol. 10, 1240–1246 (1999).

[CrossRef]

B. A. van der Wege, C. J. O’Brien, and S. Hochgreb, “Quantitative shearography in axisymmetric gas temperature measurements,” Opt. Lasers Eng. 31, 21–39 (1999).

[CrossRef]

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).

[CrossRef]

D. Veynante, J. Piana, J. M. Duclos, and C. Martel, “Experimental analysis of flame surface density models for premixed turbulent combustion,” Proc. Combust. Inst. 26, 413–420 (1996).

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).

[CrossRef]

J. C. Broda, S. Seo, R. J. Santoro, G. Shirhattikar, and V. Yang, “An experimental study of combustion dynamics of a premixed swirl injector,” Proc. Combust. Inst. 27, 1849–1856 (1998).

J. C. Broda, S. Seo, R. J. Santoro, G. Shirhattikar, and V. Yang, “An experimental study of combustion dynamics of a premixed swirl injector,” Proc. Combust. Inst. 27, 1849–1856 (1998).

J. W. Shaevitz and D. A. Fletcher, “Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function,” J. Opt. Soc. Am. 24, 2622–2627 (2007).

[CrossRef]

J. C. Broda, S. Seo, R. J. Santoro, G. Shirhattikar, and V. Yang, “An experimental study of combustion dynamics of a premixed swirl injector,” Proc. Combust. Inst. 27, 1849–1856 (1998).

J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Trans. Inf. Theory 26, 26–37 (1980).

[CrossRef]

S. F. Gull and J. Skilling, “Maximum entropy method in image processing,” IEE Proc. F 131, 646–659 (1984).

[CrossRef]

R. K. Bryan and J. Skilling, “Deconvolution by maximum entropy, as illustrated by application to the jet of M87,” Mon. Not. R. Astron. Soc. 191, 69–79 (1980).

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, K. T. Walsh, M. B. Long, and M. D. Smooke, “CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame,” Combust. Flame 122, 172–175 (2000).

[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, K. T. Walsh, M. B. Long, and M. D. Smooke, “CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame,” Combust. Flame 122, 172–175 (2000).

[CrossRef]

F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, “The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields,” Meas. Sci. Technol. 10, 1240–1246 (1999).

[CrossRef]

T. Upton, D. Verhoeven, and D. Hudgins, “High-resolution computed tomography of a turbulent reacting flow,” Exp. Fluids 50, 125–134 (2011).

[CrossRef]

B. A. van der Wege, C. J. O’Brien, and S. Hochgreb, “Quantitative shearography in axisymmetric gas temperature measurements,” Opt. Lasers Eng. 31, 21–39 (1999).

[CrossRef]

T. Upton, D. Verhoeven, and D. Hudgins, “High-resolution computed tomography of a turbulent reacting flow,” Exp. Fluids 50, 125–134 (2011).

[CrossRef]

D. Veynate, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).

[CrossRef]

D. Veynante, J. Piana, J. M. Duclos, and C. Martel, “Experimental analysis of flame surface density models for premixed turbulent combustion,” Proc. Combust. Inst. 26, 413–420 (1996).

D. Veynate, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).

[CrossRef]

F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, “The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields,” Meas. Sci. Technol. 10, 1240–1246 (1999).

[CrossRef]

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, K. T. Walsh, M. B. Long, and M. D. Smooke, “CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame,” Combust. Flame 122, 172–175 (2000).

[CrossRef]

Y. M. Wang, H. B. Wang, F. H. Li, L. S. Jia, and X. L. Chen, “Maximum entropy image deconvolution applied to structure determination for crystal Nd1.85Ce0.15CuO4-δ,” Micron 36, 393–400 (2005).

[CrossRef]

B. Zhou, J. Zhang, and S. Wang, “Reconstruction of flame temperature field with optical sectioning method,” IET Image Process. 5, 382–393 (2011).

[CrossRef]

Y. M. Wang, H. B. Wang, F. H. Li, L. S. Jia, and X. L. Chen, “Maximum entropy image deconvolution applied to structure determination for crystal Nd1.85Ce0.15CuO4-δ,” Micron 36, 393–400 (2005).

[CrossRef]

Z. Gut and P. Wolanski, “Flame imaging using 3D electrical capacitance tomography,” Combust. Sci. Technol. 182, 1580–1585 (2010).

[CrossRef]

H. C. Bheemul, G. Lu, and Y. Yan, “Digital imaging-based three-dimensional characterization of flame front structures in a turbulent flame,” IEEE Trans. Instrum. Meas. 54, 1073–1078 (2005).

[CrossRef]

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54, 1417–1421 (2005).

[CrossRef]

H. C. Bheemul, G. Lu, and Y. Yan, “Three-dimensional visualization and quantitative characterization of gaseous flames,” Meas. Sci. Technol. 13, 1643–1650 (2002).

[CrossRef]

J. C. Broda, S. Seo, R. J. Santoro, G. Shirhattikar, and V. Yang, “An experimental study of combustion dynamics of a premixed swirl injector,” Proc. Combust. Inst. 27, 1849–1856 (1998).

B. Zhou, J. Zhang, and S. Wang, “Reconstruction of flame temperature field with optical sectioning method,” IET Image Process. 5, 382–393 (2011).

[CrossRef]

B. Zhou, J. Zhang, and S. Wang, “Reconstruction of flame temperature field with optical sectioning method,” IET Image Process. 5, 382–393 (2011).

[CrossRef]

T. J. Cornwell and K. F. Evans, “A simple maximum entropy deconvolution algorithm,” Astron. Astrophys. 143, 77–83 (1985).

J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, K. T. Walsh, M. B. Long, and M. D. Smooke, “CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame,” Combust. Flame 122, 172–175 (2000).

[CrossRef]

Z. Gut and P. Wolanski, “Flame imaging using 3D electrical capacitance tomography,” Combust. Sci. Technol. 182, 1580–1585 (2010).

[CrossRef]

T. Upton, D. Verhoeven, and D. Hudgins, “High-resolution computed tomography of a turbulent reacting flow,” Exp. Fluids 50, 125–134 (2011).

[CrossRef]

D. Veynate, G. Lodato, P. Domingo, L. Vervisch, and E. Hawkes, “Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion,” Exp. Fluids 49, 267–278 (2010).

[CrossRef]

S. F. Gull and J. Skilling, “Maximum entropy method in image processing,” IEE Proc. F 131, 646–659 (1984).

[CrossRef]

J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Trans. Inf. Theory 26, 26–37 (1980).

[CrossRef]

H. C. Bheemul, G. Lu, and Y. Yan, “Digital imaging-based three-dimensional characterization of flame front structures in a turbulent flame,” IEEE Trans. Instrum. Meas. 54, 1073–1078 (2005).

[CrossRef]

P. M. Brisley, G. Lu, Y. Yan, and S. Cornwell, “Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera,” IEEE Trans. Instrum. Meas. 54, 1417–1421 (2005).

[CrossRef]

G. Gilabert and G. Lu, “Three-dimensional tomographic reconstruction of the luminosity distribution of a combustion flame,” IEEE Trans. Instrum. Meas. 56, 1300–1306 (2007).

[CrossRef]

B. Zhou, J. Zhang, and S. Wang, “Reconstruction of flame temperature field with optical sectioning method,” IET Image Process. 5, 382–393 (2011).

[CrossRef]

F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, and T. Nakajima, “The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields,” Meas. Sci. Technol. 10, 1240–1246 (1999).

[CrossRef]

H. C. Bheemul, G. Lu, and Y. Yan, “Three-dimensional visualization and quantitative characterization of gaseous flames,” Meas. Sci. Technol. 13, 1643–1650 (2002).

[CrossRef]

Y. M. Wang, H. B. Wang, F. H. Li, L. S. Jia, and X. L. Chen, “Maximum entropy image deconvolution applied to structure determination for crystal Nd1.85Ce0.15CuO4-δ,” Micron 36, 393–400 (2005).

[CrossRef]

R. K. Bryan and J. Skilling, “Deconvolution by maximum entropy, as illustrated by application to the jet of M87,” Mon. Not. R. Astron. Soc. 191, 69–79 (1980).

B. A. van der Wege, C. J. O’Brien, and S. Hochgreb, “Quantitative shearography in axisymmetric gas temperature measurements,” Opt. Lasers Eng. 31, 21–39 (1999).

[CrossRef]

D. Veynante, J. Piana, J. M. Duclos, and C. Martel, “Experimental analysis of flame surface density models for premixed turbulent combustion,” Proc. Combust. Inst. 26, 413–420 (1996).

J. H. Chen and H. G. Im, “Correlation of flame speed with stretch in turbulent premixed methane/air flames,” Proc. Combust. Inst. 27, 819–826 (1998).

A. N. Karpetis and R. S. Barlow, “Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames,” Proc. Combust. Inst. 30, 665–672 (2005).

[CrossRef]

J. C. Broda, S. Seo, R. J. Santoro, G. Shirhattikar, and V. Yang, “An experimental study of combustion dynamics of a premixed swirl injector,” Proc. Combust. Inst. 27, 1849–1856 (1998).

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).

[CrossRef]

Physik Instrumente, “M664 precision stage with linear piezo drive, fast, self-locking, low profile,” http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=1000450 (2011).

OKO Technologies, “AO systems with MMDM,” http://www.okotech.com/ao-systems-with-membrane-mirrors (2011).