Abstract

A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1mm*1mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-C. Sun, T.-X. Lee, S.-H. Ma, Y.-L. Lee, and S.-M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193–2195 (2006).
    [CrossRef]
  2. G. Wang, L. Wang, L. Li, D. Wang, and Y. Zhang, “Secondary optical lens designed in the method of source-target mapping,” Appl. Opt. 50, 4031–4036 (2011).
    [CrossRef]
  3. B. Kim, H. Kim, and S. Kang, “Reverse functional design of discontinuous refractive optics using an extended light source for flat illuminance distributions and high color uniformity,” Opt. Express 19, 1794–1807 (2011).
    [CrossRef]
  4. S. Zhao, K. Wang, F. Chen, D. Wu, and S. Liu, “Lens design of LED searchlight of high brightness and distant spot,” J. Opt. Soc. Am. A 28, 815–820 (2011).
    [CrossRef]
  5. J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49, 093001 (2010).
    [CrossRef]
  6. G. Patowa, X. Pueyoa, and A. Vinacua, “User-guided inverse reflector design,” Comput. Graph. 31, 501–515 (2007).
    [CrossRef]
  7. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45, 2265–2272 (2006).
    [CrossRef]
  8. B. V. Giel, Y. Meuret, and H. Thienpont, “Using a fly’s eye integrator in efficient illumination engines with multiple light-emitting diode light sources,” Opt. Eng. 46, 043001 (2007).
    [CrossRef]
  9. F. Fournier and J. Rolland, “Optimization of freeform lightpipes for light-emitting-diode projectors,” Appl. Opt. 47, 957–966 (2008).
    [CrossRef]
  10. T. Kari, J. Gadegaard, T. Søndergaard, T. G. Pedersen, and K. Pedersen, “Reliability of point source approximations in compact LED lens designs,” Opt. Express 19, A1190–A1195 (2011).
    [CrossRef]
  11. C.-C. Sun, W.-T. Chien, I. Moreno, C.-C. Hsieh, and Y.-C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918–13927 (2009).
    [CrossRef]

2011 (4)

2010 (1)

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49, 093001 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (2)

B. V. Giel, Y. Meuret, and H. Thienpont, “Using a fly’s eye integrator in efficient illumination engines with multiple light-emitting diode light sources,” Opt. Eng. 46, 043001 (2007).
[CrossRef]

G. Patowa, X. Pueyoa, and A. Vinacua, “User-guided inverse reflector design,” Comput. Graph. 31, 501–515 (2007).
[CrossRef]

2006 (2)

Avendaño-Alejo, M.

Chen, F.

Chen, J.-J.

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49, 093001 (2010).
[CrossRef]

Chien, W.-T.

Fournier, F.

Gadegaard, J.

Giel, B. V.

B. V. Giel, Y. Meuret, and H. Thienpont, “Using a fly’s eye integrator in efficient illumination engines with multiple light-emitting diode light sources,” Opt. Eng. 46, 043001 (2007).
[CrossRef]

Hsieh, C.-C.

Huang, S.-M.

Kang, S.

Kari, T.

Kim, B.

Kim, H.

Lee, T.-X.

Lee, Y.-L.

Li, L.

Lin, C.-T.

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49, 093001 (2010).
[CrossRef]

Liu, S.

Lo, Y.-C.

Ma, S.-H.

Meuret, Y.

B. V. Giel, Y. Meuret, and H. Thienpont, “Using a fly’s eye integrator in efficient illumination engines with multiple light-emitting diode light sources,” Opt. Eng. 46, 043001 (2007).
[CrossRef]

Moreno, I.

Patowa, G.

G. Patowa, X. Pueyoa, and A. Vinacua, “User-guided inverse reflector design,” Comput. Graph. 31, 501–515 (2007).
[CrossRef]

Pedersen, K.

Pedersen, T. G.

Pueyoa, X.

G. Patowa, X. Pueyoa, and A. Vinacua, “User-guided inverse reflector design,” Comput. Graph. 31, 501–515 (2007).
[CrossRef]

Rolland, J.

Søndergaard, T.

Sun, C.-C.

Thienpont, H.

B. V. Giel, Y. Meuret, and H. Thienpont, “Using a fly’s eye integrator in efficient illumination engines with multiple light-emitting diode light sources,” Opt. Eng. 46, 043001 (2007).
[CrossRef]

Tzonchev, R. I.

Vinacua, A.

G. Patowa, X. Pueyoa, and A. Vinacua, “User-guided inverse reflector design,” Comput. Graph. 31, 501–515 (2007).
[CrossRef]

Wang, D.

Wang, G.

Wang, K.

Wang, L.

Wu, D.

Zhang, Y.

Zhao, S.

Appl. Opt. (3)

Comput. Graph. (1)

G. Patowa, X. Pueyoa, and A. Vinacua, “User-guided inverse reflector design,” Comput. Graph. 31, 501–515 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49, 093001 (2010).
[CrossRef]

B. V. Giel, Y. Meuret, and H. Thienpont, “Using a fly’s eye integrator in efficient illumination engines with multiple light-emitting diode light sources,” Opt. Eng. 46, 043001 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Cartesian curve making light rays parallel.

Fig. 2.
Fig. 2.

Sectional drawing for half a lens of the first type.

Fig. 3.
Fig. 3.

Entity of lens with a=20mm and b=20mm.

Fig. 4.
Fig. 4.

Schematic diagram of light intensity.

Fig. 5.
Fig. 5.

Illumination and light rays of lenses with the same φmax.

Fig. 6.
Fig. 6.

Surface chart of illumination for lenses with (a) b=20mm, a=8mm, (b) b=20mm, a=14mm and (c) b=20mm, a=20mm.

Fig. 7.
Fig. 7.

Flux percentage versus light spot radius for the first type of lenses.

Fig. 8.
Fig. 8.

Impact of initial condition on the first type of lens.

Fig. 9.
Fig. 9.

Sectional drawing for half a lens of the second type.

Fig. 10.
Fig. 10.

Entity of lens with b=20mm and a=8mm.

Fig. 11.
Fig. 11.

Surface chart of illumination for different lenses.

Fig. 12.
Fig. 12.

Flux percentage versus light spot radius for the second type of lenses.

Fig. 13.
Fig. 13.

Impact of initial condition on the second type of lens.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{P⃗=E⃗+tV⃗n1t+n2(Q⃗P⃗)·n⃗=S.
P⃗=E⃗+[Sn2(Q⃗E⃗)·n]V⃗/(n1n2V⃗·n).
φm=π/2arcsin(min(n1,n2)/max(n1,n2)).
φmax=arctan(a/b)<φm.
r=Ui⃗+Vn⃗.
r⃗=n1i⃗/n2+Vn⃗.
r⃗=(n1/n2)i⃗+{(i⃗·n⃗)(n1/n2)+[1(n1/n2)2(1(i⃗·n⃗)2)]1/2}n⃗.

Metrics