Abstract

This work involves a new optical application for transparent superhydrophobic materials, which enables low-energy optical contact between a liquid and solid surface. The new technique described here uses this surface property to control the reflectance of a surface using frustration of total internal reflection. Surface chemistry and appropriate micro-scale and nano-scale geometries are combined to produce interfaces with low adhesion to water and the degree to which incident light is reflected at this interface is controlled by the movement of water, thereby modifying the optical characteristics at the interface. The low adhesion of water to superhydrophobic surfaces is particularly advantageous in imaging applications where power use must be minimized. This paper describes the general approach, as well as a proof-of-principle experiment in which the reflectance was controlled by moving a water drop into and out of contact with a superhydrophobic surface by variation of applied electrostatic pressure.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253–255 (1998).
    [CrossRef]
  2. R. C. Liang, J. Hou, J. Chung, X. Wang, C. Pereira, and Y. Chen, “Microcup active and passive matrix electrophoretic displays by roll-to-roll manufacturing processes,” Proc. SID Symp. 2003, 838–841 (2003).
  3. J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).
  4. M. A. Mossman, V. H. Kwong, and L. A. Whitehead, “A novel reflective image display using total internal reflection,” Displays 25, 215–221 (2004).
    [CrossRef]
  5. M. A. Mossman and L. A. Whitehead, “Controlled frustration of total internal reflection by electrophoresis of pigment particles,” Appl. Opt. 44, 1601–1609 (2005).
    [CrossRef]
  6. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
    [CrossRef]
  7. V. H. Kwong, M. A. Mossman, and L. A. Whitehead, “Control of reflectance of liquid droplets by means of electrowetting,” Appl. Opt. 43, 808–813 (2004).
    [CrossRef]
  8. J. Bico, C. Marzolin, and D. Quere, “Pearl drops,” Europhys. Lett. 47, 220–226 (1999).
    [CrossRef]
  9. C. Neinhuis and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Ann. Bot. 79, 667–677 (1997).
    [CrossRef]
  10. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
    [CrossRef]
  11. R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28, 988–994 (1936).
  12. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
    [CrossRef]
  13. X. Li, D. Reinhoudt, and M. Crego-Calama, “What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces,” Chem. Soc. Rev. 36, 1350–1368 (2007).
    [CrossRef]
  14. L. Gao and T. McCarthy, “How Wenzel and Cassie were wrong,” Langmuir 23, 3762–3765 (2007).
    [CrossRef]
  15. L. Gao and T. McCarthy, “An attempt to correct the faulty intuition perpetuated by the Wenzel and Cassie ‘laws,’” Langmuir 25, 7249–7255 (2009).
    [CrossRef]
  16. L. Gao and T. McCarthy, “Wetting 101,” Langmuir 25, 14105–14115 (2009).
    [CrossRef]
  17. J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids Surf. 206, 41 (2002).
  18. S. Herminghaus, “Roughness-induced non-wetting,” Europhys. Lett. 52, 165–170 (2000).
    [CrossRef]
  19. N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-scale roughness produces unusually water repellent surfaces,” Adv. Mater. 16, 1929–1932 (2004).
  20. A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
    [CrossRef]
  21. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
    [CrossRef]
  22. A. Nakajima, K. Hashimoto, and T. Watanabe, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16, 7044–7047 (2000).
    [CrossRef]
  23. J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir 23, 7293–7298 (2007).
    [CrossRef]
  24. H. Yabu and M. Shimomura, “Single-step fabrication of transparent superhydrophobic porous polymer films,” Chem. Mater. 17, 5231–5234 (2005).
    [CrossRef]
  25. K. Tadanaha, K. Kitamuro, A. Matsuda, and T. Minami, “Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method,” J. Sol-Gel Sci. Technol. 26, 705–708 (2003).
  26. S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford, 2001).
  27. N. Vourdas, A. Tserepi, and E. Gogolides, “Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing,” Nanotechnology 18, 125304 (2007).
    [CrossRef]
  28. L. I. Grossweiner, The Science of Phototherapy, An Introduction (Springer, 2005).
  29. J. Aggarwal, A. Kotlicki, M. Mossman, and L. Whitehead, “Liquid transport based on electrostatic deformation of fluid interfaces,” J. Appl. Phys. 99, 104904 (2006).
    [CrossRef]
  30. J. I. Seeger and S. B. Crary, “Stabilization of electrostatically actuated mechanical devices,” in Vol. 2 of the Proceedings of the International Conference on Solid State Sensors and Actuators (IEEE, 1997), pp. 1133–1136.

2011

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).

2009

L. Gao and T. McCarthy, “An attempt to correct the faulty intuition perpetuated by the Wenzel and Cassie ‘laws,’” Langmuir 25, 7249–7255 (2009).
[CrossRef]

L. Gao and T. McCarthy, “Wetting 101,” Langmuir 25, 14105–14115 (2009).
[CrossRef]

2008

A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
[CrossRef]

2007

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
[CrossRef]

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir 23, 7293–7298 (2007).
[CrossRef]

X. Li, D. Reinhoudt, and M. Crego-Calama, “What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces,” Chem. Soc. Rev. 36, 1350–1368 (2007).
[CrossRef]

L. Gao and T. McCarthy, “How Wenzel and Cassie were wrong,” Langmuir 23, 3762–3765 (2007).
[CrossRef]

N. Vourdas, A. Tserepi, and E. Gogolides, “Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing,” Nanotechnology 18, 125304 (2007).
[CrossRef]

2006

J. Aggarwal, A. Kotlicki, M. Mossman, and L. Whitehead, “Liquid transport based on electrostatic deformation of fluid interfaces,” J. Appl. Phys. 99, 104904 (2006).
[CrossRef]

2005

M. A. Mossman and L. A. Whitehead, “Controlled frustration of total internal reflection by electrophoresis of pigment particles,” Appl. Opt. 44, 1601–1609 (2005).
[CrossRef]

H. Yabu and M. Shimomura, “Single-step fabrication of transparent superhydrophobic porous polymer films,” Chem. Mater. 17, 5231–5234 (2005).
[CrossRef]

2004

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-scale roughness produces unusually water repellent surfaces,” Adv. Mater. 16, 1929–1932 (2004).

V. H. Kwong, M. A. Mossman, and L. A. Whitehead, “Control of reflectance of liquid droplets by means of electrowetting,” Appl. Opt. 43, 808–813 (2004).
[CrossRef]

M. A. Mossman, V. H. Kwong, and L. A. Whitehead, “A novel reflective image display using total internal reflection,” Displays 25, 215–221 (2004).
[CrossRef]

2003

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[CrossRef]

R. C. Liang, J. Hou, J. Chung, X. Wang, C. Pereira, and Y. Chen, “Microcup active and passive matrix electrophoretic displays by roll-to-roll manufacturing processes,” Proc. SID Symp. 2003, 838–841 (2003).

K. Tadanaha, K. Kitamuro, A. Matsuda, and T. Minami, “Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method,” J. Sol-Gel Sci. Technol. 26, 705–708 (2003).

2002

J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids Surf. 206, 41 (2002).

2000

S. Herminghaus, “Roughness-induced non-wetting,” Europhys. Lett. 52, 165–170 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

A. Nakajima, K. Hashimoto, and T. Watanabe, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16, 7044–7047 (2000).
[CrossRef]

1999

J. Bico, C. Marzolin, and D. Quere, “Pearl drops,” Europhys. Lett. 47, 220–226 (1999).
[CrossRef]

1998

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253–255 (1998).
[CrossRef]

1997

C. Neinhuis and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Ann. Bot. 79, 667–677 (1997).
[CrossRef]

1944

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

1936

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28, 988–994 (1936).

Aggarwal, J.

J. Aggarwal, A. Kotlicki, M. Mossman, and L. Whitehead, “Liquid transport based on electrostatic deformation of fluid interfaces,” J. Appl. Phys. 99, 104904 (2006).
[CrossRef]

Ahuja, A.

A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
[CrossRef]

Albert, J. D.

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253–255 (1998).
[CrossRef]

Barthlott, W.

C. Neinhuis and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Ann. Bot. 79, 667–677 (1997).
[CrossRef]

Baxter, S.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Bico, J.

J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids Surf. 206, 41 (2002).

J. Bico, C. Marzolin, and D. Quere, “Pearl drops,” Europhys. Lett. 47, 220–226 (1999).
[CrossRef]

Bravo, J.

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir 23, 7293–7298 (2007).
[CrossRef]

Campbell, S. A.

S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford, 2001).

Cassie, A. B. D.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Chabrol, G.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-scale roughness produces unusually water repellent surfaces,” Adv. Mater. 16, 1929–1932 (2004).

Chen, Y.

R. C. Liang, J. Hou, J. Chung, X. Wang, C. Pereira, and Y. Chen, “Microcup active and passive matrix electrophoretic displays by roll-to-roll manufacturing processes,” Proc. SID Symp. 2003, 838–841 (2003).

Choi, W.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
[CrossRef]

Chung, J.

R. C. Liang, J. Hou, J. Chung, X. Wang, C. Pereira, and Y. Chen, “Microcup active and passive matrix electrophoretic displays by roll-to-roll manufacturing processes,” Proc. SID Symp. 2003, 838–841 (2003).

Cohen, R. E.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
[CrossRef]

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir 23, 7293–7298 (2007).
[CrossRef]

Comiskey, B.

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253–255 (1998).
[CrossRef]

Crary, S. B.

J. I. Seeger and S. B. Crary, “Stabilization of electrostatically actuated mechanical devices,” in Vol. 2 of the Proceedings of the International Conference on Solid State Sensors and Actuators (IEEE, 1997), pp. 1133–1136.

Crego-Calama, M.

X. Li, D. Reinhoudt, and M. Crego-Calama, “What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces,” Chem. Soc. Rev. 36, 1350–1368 (2007).
[CrossRef]

Drzaic, P.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).

Feenstra, B. J.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[CrossRef]

Fujishima, A.

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

Gao, L.

L. Gao and T. McCarthy, “Wetting 101,” Langmuir 25, 14105–14115 (2009).
[CrossRef]

L. Gao and T. McCarthy, “An attempt to correct the faulty intuition perpetuated by the Wenzel and Cassie ‘laws,’” Langmuir 25, 7249–7255 (2009).
[CrossRef]

L. Gao and T. McCarthy, “How Wenzel and Cassie were wrong,” Langmuir 23, 3762–3765 (2007).
[CrossRef]

Gogolides, E.

N. Vourdas, A. Tserepi, and E. Gogolides, “Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing,” Nanotechnology 18, 125304 (2007).
[CrossRef]

Grossweiner, L. I.

L. I. Grossweiner, The Science of Phototherapy, An Introduction (Springer, 2005).

Hashimoto, K.

A. Nakajima, K. Hashimoto, and T. Watanabe, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16, 7044–7047 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

Hayes, R. A.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[CrossRef]

Heikenfeld, J.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).

Herminghaus, S.

S. Herminghaus, “Roughness-induced non-wetting,” Europhys. Lett. 52, 165–170 (2000).
[CrossRef]

Hou, J.

R. C. Liang, J. Hou, J. Chung, X. Wang, C. Pereira, and Y. Chen, “Microcup active and passive matrix electrophoretic displays by roll-to-roll manufacturing processes,” Proc. SID Symp. 2003, 838–841 (2003).

Jacobson, J.

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253–255 (1998).
[CrossRef]

Kitamuro, K.

K. Tadanaha, K. Kitamuro, A. Matsuda, and T. Minami, “Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method,” J. Sol-Gel Sci. Technol. 26, 705–708 (2003).

Koch, T.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).

Kolodner, P.

A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
[CrossRef]

Kotlicki, A.

J. Aggarwal, A. Kotlicki, M. Mossman, and L. Whitehead, “Liquid transport based on electrostatic deformation of fluid interfaces,” J. Appl. Phys. 99, 104904 (2006).
[CrossRef]

Krupenkin, T. N.

A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
[CrossRef]

Kwong, V. H.

M. A. Mossman, V. H. Kwong, and L. A. Whitehead, “A novel reflective image display using total internal reflection,” Displays 25, 215–221 (2004).
[CrossRef]

V. H. Kwong, M. A. Mossman, and L. A. Whitehead, “Control of reflectance of liquid droplets by means of electrowetting,” Appl. Opt. 43, 808–813 (2004).
[CrossRef]

Li, X.

X. Li, D. Reinhoudt, and M. Crego-Calama, “What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces,” Chem. Soc. Rev. 36, 1350–1368 (2007).
[CrossRef]

Liang, R. C.

R. C. Liang, J. Hou, J. Chung, X. Wang, C. Pereira, and Y. Chen, “Microcup active and passive matrix electrophoretic displays by roll-to-roll manufacturing processes,” Proc. SID Symp. 2003, 838–841 (2003).

Lifton, V.

A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
[CrossRef]

Lobaton, E. J.

A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
[CrossRef]

Ma, M.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
[CrossRef]

Mabry, J. M.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
[CrossRef]

Marzolin, C.

J. Bico, C. Marzolin, and D. Quere, “Pearl drops,” Europhys. Lett. 47, 220–226 (1999).
[CrossRef]

Matsuda, A.

K. Tadanaha, K. Kitamuro, A. Matsuda, and T. Minami, “Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method,” J. Sol-Gel Sci. Technol. 26, 705–708 (2003).

Mazzella, S. A.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
[CrossRef]

McCarthy, T.

L. Gao and T. McCarthy, “Wetting 101,” Langmuir 25, 14105–14115 (2009).
[CrossRef]

L. Gao and T. McCarthy, “An attempt to correct the faulty intuition perpetuated by the Wenzel and Cassie ‘laws,’” Langmuir 25, 7249–7255 (2009).
[CrossRef]

L. Gao and T. McCarthy, “How Wenzel and Cassie were wrong,” Langmuir 23, 3762–3765 (2007).
[CrossRef]

McHale, G.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-scale roughness produces unusually water repellent surfaces,” Adv. Mater. 16, 1929–1932 (2004).

McKinley, G. H.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
[CrossRef]

Minami, T.

K. Tadanaha, K. Kitamuro, A. Matsuda, and T. Minami, “Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method,” J. Sol-Gel Sci. Technol. 26, 705–708 (2003).

Miwa, M.

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

Mossman, M.

J. Aggarwal, A. Kotlicki, M. Mossman, and L. Whitehead, “Liquid transport based on electrostatic deformation of fluid interfaces,” J. Appl. Phys. 99, 104904 (2006).
[CrossRef]

Mossman, M. A.

Nakajima, A.

A. Nakajima, K. Hashimoto, and T. Watanabe, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16, 7044–7047 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

Neinhuis, C.

C. Neinhuis and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Ann. Bot. 79, 667–677 (1997).
[CrossRef]

Newton, M. I.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-scale roughness produces unusually water repellent surfaces,” Adv. Mater. 16, 1929–1932 (2004).

Pereira, C.

R. C. Liang, J. Hou, J. Chung, X. Wang, C. Pereira, and Y. Chen, “Microcup active and passive matrix electrophoretic displays by roll-to-roll manufacturing processes,” Proc. SID Symp. 2003, 838–841 (2003).

Perry, C. C.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-scale roughness produces unusually water repellent surfaces,” Adv. Mater. 16, 1929–1932 (2004).

Quere, D.

J. Bico, C. Marzolin, and D. Quere, “Pearl drops,” Europhys. Lett. 47, 220–226 (1999).
[CrossRef]

Quéré, D.

J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids Surf. 206, 41 (2002).

Reinhoudt, D.

X. Li, D. Reinhoudt, and M. Crego-Calama, “What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces,” Chem. Soc. Rev. 36, 1350–1368 (2007).
[CrossRef]

Rubner, M. F.

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir 23, 7293–7298 (2007).
[CrossRef]

Rutledge, G. C.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
[CrossRef]

Salamon, T. R.

A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
[CrossRef]

Seeger, J. I.

J. I. Seeger and S. B. Crary, “Stabilization of electrostatically actuated mechanical devices,” in Vol. 2 of the Proceedings of the International Conference on Solid State Sensors and Actuators (IEEE, 1997), pp. 1133–1136.

Shimomura, M.

H. Yabu and M. Shimomura, “Single-step fabrication of transparent superhydrophobic porous polymer films,” Chem. Mater. 17, 5231–5234 (2005).
[CrossRef]

Shirtcliffe, N. J.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-scale roughness produces unusually water repellent surfaces,” Adv. Mater. 16, 1929–1932 (2004).

Sidorenko, A. A.

A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
[CrossRef]

Tadanaha, K.

K. Tadanaha, K. Kitamuro, A. Matsuda, and T. Minami, “Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method,” J. Sol-Gel Sci. Technol. 26, 705–708 (2003).

Taylor, J. A.

A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
[CrossRef]

Thiele, U.

J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids Surf. 206, 41 (2002).

Tserepi, A.

N. Vourdas, A. Tserepi, and E. Gogolides, “Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing,” Nanotechnology 18, 125304 (2007).
[CrossRef]

Tuteja, A.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
[CrossRef]

Vourdas, N.

N. Vourdas, A. Tserepi, and E. Gogolides, “Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing,” Nanotechnology 18, 125304 (2007).
[CrossRef]

Wang, X.

R. C. Liang, J. Hou, J. Chung, X. Wang, C. Pereira, and Y. Chen, “Microcup active and passive matrix electrophoretic displays by roll-to-roll manufacturing processes,” Proc. SID Symp. 2003, 838–841 (2003).

Watanabe, T.

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

A. Nakajima, K. Hashimoto, and T. Watanabe, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16, 7044–7047 (2000).
[CrossRef]

Wenzel, R. N.

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28, 988–994 (1936).

Whitehead, L.

J. Aggarwal, A. Kotlicki, M. Mossman, and L. Whitehead, “Liquid transport based on electrostatic deformation of fluid interfaces,” J. Appl. Phys. 99, 104904 (2006).
[CrossRef]

Whitehead, L. A.

Wu, Z.

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir 23, 7293–7298 (2007).
[CrossRef]

Yabu, H.

H. Yabu and M. Shimomura, “Single-step fabrication of transparent superhydrophobic porous polymer films,” Chem. Mater. 17, 5231–5234 (2005).
[CrossRef]

Yeo, J.-S.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).

Yoshizawa, H.

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253–255 (1998).
[CrossRef]

Zhai, L.

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir 23, 7293–7298 (2007).
[CrossRef]

Adv. Mater.

N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol, and C. C. Perry, “Dual-scale roughness produces unusually water repellent surfaces,” Adv. Mater. 16, 1929–1932 (2004).

Ann. Bot.

C. Neinhuis and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Ann. Bot. 79, 667–677 (1997).
[CrossRef]

Appl. Opt.

Chem. Mater.

H. Yabu and M. Shimomura, “Single-step fabrication of transparent superhydrophobic porous polymer films,” Chem. Mater. 17, 5231–5234 (2005).
[CrossRef]

Chem. Soc. Rev.

X. Li, D. Reinhoudt, and M. Crego-Calama, “What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces,” Chem. Soc. Rev. 36, 1350–1368 (2007).
[CrossRef]

Colloids Surf.

J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids Surf. 206, 41 (2002).

Displays

M. A. Mossman, V. H. Kwong, and L. A. Whitehead, “A novel reflective image display using total internal reflection,” Displays 25, 215–221 (2004).
[CrossRef]

Europhys. Lett.

J. Bico, C. Marzolin, and D. Quere, “Pearl drops,” Europhys. Lett. 47, 220–226 (1999).
[CrossRef]

S. Herminghaus, “Roughness-induced non-wetting,” Europhys. Lett. 52, 165–170 (2000).
[CrossRef]

Ind. Eng. Chem.

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28, 988–994 (1936).

J. Appl. Phys.

J. Aggarwal, A. Kotlicki, M. Mossman, and L. Whitehead, “Liquid transport based on electrostatic deformation of fluid interfaces,” J. Appl. Phys. 99, 104904 (2006).
[CrossRef]

J. Soc. Inf. Disp.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011).

J. Sol-Gel Sci. Technol.

K. Tadanaha, K. Kitamuro, A. Matsuda, and T. Minami, “Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method,” J. Sol-Gel Sci. Technol. 26, 705–708 (2003).

Langmuir

A. Nakajima, K. Hashimoto, and T. Watanabe, “Transparent superhydrophobic thin films with self-cleaning properties,” Langmuir 16, 7044–7047 (2000).
[CrossRef]

J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, and M. F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir 23, 7293–7298 (2007).
[CrossRef]

A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, “Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces,” Langmuir 24, 9–14(2008).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

L. Gao and T. McCarthy, “How Wenzel and Cassie were wrong,” Langmuir 23, 3762–3765 (2007).
[CrossRef]

L. Gao and T. McCarthy, “An attempt to correct the faulty intuition perpetuated by the Wenzel and Cassie ‘laws,’” Langmuir 25, 7249–7255 (2009).
[CrossRef]

L. Gao and T. McCarthy, “Wetting 101,” Langmuir 25, 14105–14115 (2009).
[CrossRef]

Nanotechnology

N. Vourdas, A. Tserepi, and E. Gogolides, “Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing,” Nanotechnology 18, 125304 (2007).
[CrossRef]

Nature

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253–255 (1998).
[CrossRef]

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003).
[CrossRef]

Proc. SID Symp.

R. C. Liang, J. Hou, J. Chung, X. Wang, C. Pereira, and Y. Chen, “Microcup active and passive matrix electrophoretic displays by roll-to-roll manufacturing processes,” Proc. SID Symp. 2003, 838–841 (2003).

Science

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science 318, 1618–1622(2007).
[CrossRef]

Trans. Faraday Soc.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Other

S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford, 2001).

L. I. Grossweiner, The Science of Phototherapy, An Introduction (Springer, 2005).

J. I. Seeger and S. B. Crary, “Stabilization of electrostatically actuated mechanical devices,” in Vol. 2 of the Proceedings of the International Conference on Solid State Sensors and Actuators (IEEE, 1997), pp. 1133–1136.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

(a) Light reflected off of a prismatic film by total internal reflection at an interface between two materials with indices of refraction n2 and n1. (b) Light absorbed by frustration of total internal reflection.

Fig. 2.
Fig. 2.

Liquid drop in (a) Wenzel state and (b) Cassie–Baxter state.

Fig. 3.
Fig. 3.

(a) Liquid resting on surface with dual scale roughness feature maintains an air gap and (b) liquid is in optical but not physical contact with the surface.

Fig. 4.
Fig. 4.

Liquid resting on spheres under (a) no applied pressure and (b) applied pressure.

Fig. 5.
Fig. 5.

(a) Water resting on a superhydrophobic surface made of hemisphere-topped pillars. (b) Water resting on a superhydrophobic surface with overhanging features, that of spheres on thin posts.

Fig. 6.
Fig. 6.

SEM image of PMMA surface after oxygen plasma etch at 10 k magnification.

Fig. 7.
Fig. 7.

SEM image of plasma-etched PMMA film coated with Teflon AF at 10 k magnification.

Fig. 8.
Fig. 8.

Structure of FTIR devices.

Fig. 9.
Fig. 9.

(a) Water on dual-scaled superhydrophobic surface with zero applied electrical potential. (b) Water within evanescent region once potential is applied.

Fig. 10.
Fig. 10.

Experimental setup for characterization of optical response of FTIR device.

Fig. 11.
Fig. 11.

Reflectance response of FTIR device to multiple cycles of applied potential.

Fig. 12.
Fig. 12.

Optical reflectance when applied potential is increased from 0 V to 280 V. The curve on the bottom is the applied electrical potential, and the curve on top is the corresponding measured optical reflectance.

Fig. 13.
Fig. 13.

Optical reflectance when applied potential is reduced from 280 V to 0 V. The curve on the bottom is the applied electrical potential, and the curve on top is the corresponding measured optical reflectance.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cosθrough=rcosθflat,
cosθrough=fcosθflat+f1.

Metrics