Abstract

Heating of composite plasmon-resonant nanoparticles (spherical gold nanoshells) under pulse laser illumination is considered. The numerical solution of the time-dependent heat conduction equation accounting for spatial inhomogeneities of absorbed laser radiation is performed. Important features of temperature kinetics and thermal flux inside nanoparticles are analyzed. Possible applications of the observed effects in nanotechnology and medicine are discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
    [CrossRef]
  2. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  3. N. G. Khlebtsov, “Optics and biophotonics of nanoparticles with a plasmon resonance,” Quantum Electron. 38, 504–529 (2008).
    [CrossRef]
  4. V. V. Klimov, Nanoplasmonics (Fizmatlit, 2009).
  5. V. V. Tuchin, ed., Advanced Optical Cytometry: Methods and Disease Diagnoses (Wiley-VCH, 2011).
  6. G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
    [CrossRef]
  7. G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
    [CrossRef]
  8. R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role of nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
    [CrossRef]
  9. D. A. Gorin, S. A. Portnov, and O. A. Inozemtseva, et al, “Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation,” Phys. Chem. Chem. Phys. 10, 6899–6905 (2008).
    [CrossRef]
  10. G. F. Paciotti, D. G. I. Kingston, and L. Tamarkin, “Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors,” Drug Dev. Res. 67, 47–54 (2006).
    [CrossRef]
  11. G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701 (2008).
    [CrossRef]
  12. C. M. Pitsilides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
    [CrossRef]
  13. V. K. Pustovalov and V. A. Babenko, “Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine,” Laser Phys. Lett. 1, 516–520 (2004).
    [CrossRef]
  14. V. K. Pustovalov and L. G. Astafyeva, “Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion,” Nanoscale Res. Lett. 6, 448–455 (2011).
    [CrossRef]
  15. V. K. Pustovalov, “Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters,” Laser Phys. 21, 906–912 (2011).
    [CrossRef]
  16. R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol., 251718 (2008).
  17. C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom-up plasmonic structures,” New J. Phys. 10, 105016 (2008).
    [CrossRef]
  18. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
    [CrossRef]
  19. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2, 291–304 (2011).
    [CrossRef]
  20. M. Y. Park, S. Lim, S. W. Lee, and S. E. Park, “Relative parameter contributions for encapsulating silica-gold nanoshells by poly(N-isopropylacrylamide-co-acrylic acid) hydrogels,” Macromol. Res. 17, 307–312 (2009).
    [CrossRef]
  21. Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “On the problem of local tissue hyperthermia control: multiscale modelling of pulsed laser radiation action on a medium with embedded nanoparticles,” Quantum Electron. 40, 1081–1088 (2010).
    [CrossRef]
  22. Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “Novel thermal effect at nanoshell heating by pulsed laser irradiation: hoop-shaped hot zone formation,” J. Biophoton., doi:10.1002/jbio.201100074 (to be published).
    [CrossRef]
  23. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007), Vol. PM 166.
  24. E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  27. V. V. Tuchin, Lasers and Fiber Optics in Biomedical Science, 2nd ed. (Fizmatlit, 2010).
  28. B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, “Thermal conductivity of Ge-Si alloys at high temperatures,” Phys. Rev. 125, 44–46 (1962).
    [CrossRef]
  29. R. J. Hemley, C. T. Prewitt, and K. J. Kingma, “High-pressure behavior of silica,” Rev. Mineralog. Geochem. 29, 41–81 (1994).
  30. C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 °K to the melting point,” Phys. Rev. A 134, A1058–A1069 (1964).
  31. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B. 16, 3513–3534 (1977).
    [CrossRef]
  32. S. M. Kachan and A. N. Ponyavina, “Resonance absorption spectra of composites containing metal-coated nanoparticles,” J. Mol. Struct. 563–564, 267–272 (2001).
  33. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
    [CrossRef]
  34. A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C 112, 10641 (2008).
    [CrossRef]
  35. W. B. J. Zimmerman, Multiphysics Modeling with Finite Element Methods (World Scientific, 2006).

2011 (3)

V. K. Pustovalov and L. G. Astafyeva, “Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion,” Nanoscale Res. Lett. 6, 448–455 (2011).
[CrossRef]

V. K. Pustovalov, “Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters,” Laser Phys. 21, 906–912 (2011).
[CrossRef]

M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2, 291–304 (2011).
[CrossRef]

2010 (1)

Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “On the problem of local tissue hyperthermia control: multiscale modelling of pulsed laser radiation action on a medium with embedded nanoparticles,” Quantum Electron. 40, 1081–1088 (2010).
[CrossRef]

2009 (4)

M. Y. Park, S. Lim, S. W. Lee, and S. E. Park, “Relative parameter contributions for encapsulating silica-gold nanoshells by poly(N-isopropylacrylamide-co-acrylic acid) hydrogels,” Macromol. Res. 17, 307–312 (2009).
[CrossRef]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

2008 (6)

N. G. Khlebtsov, “Optics and biophotonics of nanoparticles with a plasmon resonance,” Quantum Electron. 38, 504–529 (2008).
[CrossRef]

D. A. Gorin, S. A. Portnov, and O. A. Inozemtseva, et al, “Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation,” Phys. Chem. Chem. Phys. 10, 6899–6905 (2008).
[CrossRef]

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701 (2008).
[CrossRef]

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol., 251718 (2008).

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom-up plasmonic structures,” New J. Phys. 10, 105016 (2008).
[CrossRef]

A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C 112, 10641 (2008).
[CrossRef]

2006 (3)

G. F. Paciotti, D. G. I. Kingston, and L. Tamarkin, “Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors,” Drug Dev. Res. 67, 47–54 (2006).
[CrossRef]

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
[CrossRef]

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role of nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

2004 (1)

V. K. Pustovalov and V. A. Babenko, “Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine,” Laser Phys. Lett. 1, 516–520 (2004).
[CrossRef]

2003 (2)

C. M. Pitsilides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[CrossRef]

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

2001 (1)

S. M. Kachan and A. N. Ponyavina, “Resonance absorption spectra of composites containing metal-coated nanoparticles,” J. Mol. Struct. 563–564, 267–272 (2001).

1994 (1)

R. J. Hemley, C. T. Prewitt, and K. J. Kingma, “High-pressure behavior of silica,” Rev. Mineralog. Geochem. 29, 41–81 (1994).

1977 (1)

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B. 16, 3513–3534 (1977).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1964 (1)

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 °K to the melting point,” Phys. Rev. A 134, A1058–A1069 (1964).

1962 (1)

B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, “Thermal conductivity of Ge-Si alloys at high temperatures,” Phys. Rev. 125, 44–46 (1962).
[CrossRef]

Abeles, B.

B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, “Thermal conductivity of Ge-Si alloys at high temperatures,” Phys. Rev. 125, 44–46 (1962).
[CrossRef]

Akchurin, G.

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701 (2008).
[CrossRef]

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701 (2008).
[CrossRef]

Akchurin, G. G.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

Anderson, R. R.

C. M. Pitsilides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[CrossRef]

Astafyeva, L. G.

V. K. Pustovalov and L. G. Astafyeva, “Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion,” Nanoscale Res. Lett. 6, 448–455 (2011).
[CrossRef]

Avetisyan, Yu. A.

Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “On the problem of local tissue hyperthermia control: multiscale modelling of pulsed laser radiation action on a medium with embedded nanoparticles,” Quantum Electron. 40, 1081–1088 (2010).
[CrossRef]

Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “Novel thermal effect at nanoshell heating by pulsed laser irradiation: hoop-shaped hot zone formation,” J. Biophoton., doi:10.1002/jbio.201100074 (to be published).
[CrossRef]

Babenko, V. A.

V. K. Pustovalov and V. A. Babenko, “Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine,” Laser Phys. Lett. 1, 516–520 (2004).
[CrossRef]

Baffou, G.

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom-up plasmonic structures,” New J. Phys. 10, 105016 (2008).
[CrossRef]

Beers, D. S.

B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, “Thermal conductivity of Ge-Si alloys at high temperatures,” Phys. Rev. 125, 44–46 (1962).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Bollinger, B. M.

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol., 251718 (2008).

Carlson, M. T.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cody, G. D.

B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, “Thermal conductivity of Ge-Si alloys at high temperatures,” Phys. Rev. 125, 44–46 (1962).
[CrossRef]

Coronado, E. A.

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

Dismukes, J. P.

B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, “Thermal conductivity of Ge-Si alloys at high temperatures,” Phys. Rev. 125, 44–46 (1962).
[CrossRef]

Dujardin, E.

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom-up plasmonic structures,” New J. Phys. 10, 105016 (2008).
[CrossRef]

Duree, G. C.

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol., 251718 (2008).

Frenz, M.

George, T. F.

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol., 251718 (2008).

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role of nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

Girard, C.

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom-up plasmonic structures,” New J. Phys. 10, 105016 (2008).
[CrossRef]

Glassbrenner, C. J.

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 °K to the melting point,” Phys. Rev. A 134, A1058–A1069 (1964).

Gorin, D. A.

D. A. Gorin, S. A. Portnov, and O. A. Inozemtseva, et al, “Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation,” Phys. Chem. Chem. Phys. 10, 6899–6905 (2008).
[CrossRef]

Govorov, A. O.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B. 16, 3513–3534 (1977).
[CrossRef]

Hemley, R. J.

R. J. Hemley, C. T. Prewitt, and K. J. Kingma, “High-pressure behavior of silica,” Rev. Mineralog. Geochem. 29, 41–81 (1994).

Hernandez, P.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Hunderi, O.

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B. 16, 3513–3534 (1977).
[CrossRef]

Inozemtseva, O. A.

D. A. Gorin, S. A. Portnov, and O. A. Inozemtseva, et al, “Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation,” Phys. Chem. Chem. Phys. 10, 6899–6905 (2008).
[CrossRef]

Jaeger, M.

Joe, E. K.

C. M. Pitsilides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[CrossRef]

Joenathan, C.

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role of nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kachan, S. M.

S. M. Kachan and A. N. Ponyavina, “Resonance absorption spectra of composites containing metal-coated nanoparticles,” J. Mol. Struct. 563–564, 267–272 (2001).

Khlebtsov, B.

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701 (2008).
[CrossRef]

Khlebtsov, B. N.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Khlebtsov, N.

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701 (2008).
[CrossRef]

Khlebtsov, N. G.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

N. G. Khlebtsov, “Optics and biophotonics of nanoparticles with a plasmon resonance,” Quantum Electron. 38, 504–529 (2008).
[CrossRef]

Kingma, K. J.

R. J. Hemley, C. T. Prewitt, and K. J. Kingma, “High-pressure behavior of silica,” Rev. Mineralog. Geochem. 29, 41–81 (1994).

Kingston, D. G. I.

G. F. Paciotti, D. G. I. Kingston, and L. Tamarkin, “Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors,” Drug Dev. Res. 67, 47–54 (2006).
[CrossRef]

Kitz, M.

Klimov, V. V.

V. V. Klimov, Nanoplasmonics (Fizmatlit, 2009).

Kogan, B. Ya

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
[CrossRef]

Lee, S. W.

M. Y. Park, S. Lim, S. W. Lee, and S. E. Park, “Relative parameter contributions for encapsulating silica-gold nanoshells by poly(N-isopropylacrylamide-co-acrylic acid) hydrogels,” Macromol. Res. 17, 307–312 (2009).
[CrossRef]

Letfullin, R. R.

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol., 251718 (2008).

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role of nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

Lim, S.

M. Y. Park, S. Lim, S. W. Lee, and S. E. Park, “Relative parameter contributions for encapsulating silica-gold nanoshells by poly(N-isopropylacrylamide-co-acrylic acid) hydrogels,” Macromol. Res. 17, 307–312 (2009).
[CrossRef]

Lin, C. P.

C. M. Pitsilides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[CrossRef]

Maksimova, I. L.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Maslyakova, G. N.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Moroz, A.

A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C 112, 10641 (2008).
[CrossRef]

Paciotti, G. F.

G. F. Paciotti, D. G. I. Kingston, and L. Tamarkin, “Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors,” Drug Dev. Res. 67, 47–54 (2006).
[CrossRef]

Park, M. Y.

M. Y. Park, S. Lim, S. W. Lee, and S. E. Park, “Relative parameter contributions for encapsulating silica-gold nanoshells by poly(N-isopropylacrylamide-co-acrylic acid) hydrogels,” Macromol. Res. 17, 307–312 (2009).
[CrossRef]

Park, S. E.

M. Y. Park, S. Lim, S. W. Lee, and S. E. Park, “Relative parameter contributions for encapsulating silica-gold nanoshells by poly(N-isopropylacrylamide-co-acrylic acid) hydrogels,” Macromol. Res. 17, 307–312 (2009).
[CrossRef]

Pitsilides, C. M.

C. M. Pitsilides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[CrossRef]

Ponyavina, A. N.

S. M. Kachan and A. N. Ponyavina, “Resonance absorption spectra of composites containing metal-coated nanoparticles,” J. Mol. Struct. 563–564, 267–272 (2001).

Portnov, S. A.

D. A. Gorin, S. A. Portnov, and O. A. Inozemtseva, et al, “Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation,” Phys. Chem. Chem. Phys. 10, 6899–6905 (2008).
[CrossRef]

Preisser, S.

Prewitt, C. T.

R. J. Hemley, C. T. Prewitt, and K. J. Kingma, “High-pressure behavior of silica,” Rev. Mineralog. Geochem. 29, 41–81 (1994).

Pustovalov, V. K.

V. K. Pustovalov and L. G. Astafyeva, “Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion,” Nanoscale Res. Lett. 6, 448–455 (2011).
[CrossRef]

V. K. Pustovalov, “Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters,” Laser Phys. 21, 906–912 (2011).
[CrossRef]

V. K. Pustovalov and V. A. Babenko, “Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine,” Laser Phys. Lett. 1, 516–520 (2004).
[CrossRef]

Quidant, R.

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom-up plasmonic structures,” New J. Phys. 10, 105016 (2008).
[CrossRef]

Richardson, H. H.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Schatz, G. C.

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

Shantrocha, A. V.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

Slack, G. A.

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 °K to the melting point,” Phys. Rev. A 134, A1058–A1069 (1964).

Suleymanova, L. V.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Tamarkin, L.

G. F. Paciotti, D. G. I. Kingston, and L. Tamarkin, “Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors,” Drug Dev. Res. 67, 47–54 (2006).
[CrossRef]

Tandler, P. J.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Terentyuk, G. S.

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

Thalmann, G. N.

Tuchin, V.

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701 (2008).
[CrossRef]

Tuchin, V. V.

Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “On the problem of local tissue hyperthermia control: multiscale modelling of pulsed laser radiation action on a medium with embedded nanoparticles,” Quantum Electron. 40, 1081–1088 (2010).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

V. V. Tuchin, Lasers and Fiber Optics in Biomedical Science, 2nd ed. (Fizmatlit, 2010).

Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “Novel thermal effect at nanoshell heating by pulsed laser irradiation: hoop-shaped hot zone formation,” J. Biophoton., doi:10.1002/jbio.201100074 (to be published).
[CrossRef]

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007), Vol. PM 166.

Wei, X.

C. M. Pitsilides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[CrossRef]

Wetterwald, A.

Yakunin, A. N.

Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “On the problem of local tissue hyperthermia control: multiscale modelling of pulsed laser radiation action on a medium with embedded nanoparticles,” Quantum Electron. 40, 1081–1088 (2010).
[CrossRef]

Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “Novel thermal effect at nanoshell heating by pulsed laser irradiation: hoop-shaped hot zone formation,” J. Biophoton., doi:10.1002/jbio.201100074 (to be published).
[CrossRef]

Zhang, Z. M.

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Zharov, V.

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701 (2008).
[CrossRef]

Zharov, V. P.

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role of nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

Zimmerman, W. B. J.

W. B. J. Zimmerman, Multiphysics Modeling with Finite Element Methods (World Scientific, 2006).

Adv. Opt. Technol. (1)

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol., 251718 (2008).

Biomed. Opt. Express (1)

Biophys. J. (1)

C. M. Pitsilides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[CrossRef]

Drug Dev. Res. (1)

G. F. Paciotti, D. G. I. Kingston, and L. Tamarkin, “Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors,” Drug Dev. Res. 67, 47–54 (2006).
[CrossRef]

J. Biomed. Opt. (1)

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009).
[CrossRef]

J. Biophoton. (2)

G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, “Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery,” J. Biophoton. 2, 292–302 (2009).
[CrossRef]

Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “Novel thermal effect at nanoshell heating by pulsed laser irradiation: hoop-shaped hot zone formation,” J. Biophoton., doi:10.1002/jbio.201100074 (to be published).
[CrossRef]

J. Chem. Phys. (1)

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

J. Mol. Struct. (1)

S. M. Kachan and A. N. Ponyavina, “Resonance absorption spectra of composites containing metal-coated nanoparticles,” J. Mol. Struct. 563–564, 267–272 (2001).

J. Phys. Chem. C (1)

A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Phys. Chem. C 112, 10641 (2008).
[CrossRef]

Laser Phys. (1)

V. K. Pustovalov, “Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters,” Laser Phys. 21, 906–912 (2011).
[CrossRef]

Laser Phys. Lett. (1)

V. K. Pustovalov and V. A. Babenko, “Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine,” Laser Phys. Lett. 1, 516–520 (2004).
[CrossRef]

Macromol. Res. (1)

M. Y. Park, S. Lim, S. W. Lee, and S. E. Park, “Relative parameter contributions for encapsulating silica-gold nanoshells by poly(N-isopropylacrylamide-co-acrylic acid) hydrogels,” Macromol. Res. 17, 307–312 (2009).
[CrossRef]

Nano Lett. (1)

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009).
[CrossRef]

Nanomedicine (1)

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role of nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

Nanoscale Res. Lett. (1)

V. K. Pustovalov and L. G. Astafyeva, “Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion,” Nanoscale Res. Lett. 6, 448–455 (2011).
[CrossRef]

Nanotechnology (1)

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology 19, 015701 (2008).
[CrossRef]

New J. Phys. (1)

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom-up plasmonic structures,” New J. Phys. 10, 105016 (2008).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

D. A. Gorin, S. A. Portnov, and O. A. Inozemtseva, et al, “Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation,” Phys. Chem. Chem. Phys. 10, 6899–6905 (2008).
[CrossRef]

Phys. Rev. (1)

B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, “Thermal conductivity of Ge-Si alloys at high temperatures,” Phys. Rev. 125, 44–46 (1962).
[CrossRef]

Phys. Rev. A (1)

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 °K to the melting point,” Phys. Rev. A 134, A1058–A1069 (1964).

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. B. (1)

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B. 16, 3513–3534 (1977).
[CrossRef]

Plasmonics (1)

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
[CrossRef]

Quantum Electron. (2)

N. G. Khlebtsov, “Optics and biophotonics of nanoparticles with a plasmon resonance,” Quantum Electron. 38, 504–529 (2008).
[CrossRef]

Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, “On the problem of local tissue hyperthermia control: multiscale modelling of pulsed laser radiation action on a medium with embedded nanoparticles,” Quantum Electron. 40, 1081–1088 (2010).
[CrossRef]

Rev. Mineralog. Geochem. (1)

R. J. Hemley, C. T. Prewitt, and K. J. Kingma, “High-pressure behavior of silica,” Rev. Mineralog. Geochem. 29, 41–81 (1994).

Other (8)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

V. V. Tuchin, Lasers and Fiber Optics in Biomedical Science, 2nd ed. (Fizmatlit, 2010).

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007), Vol. PM 166.

E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).

W. B. J. Zimmerman, Multiphysics Modeling with Finite Element Methods (World Scientific, 2006).

V. V. Klimov, Nanoplasmonics (Fizmatlit, 2009).

V. V. Tuchin, ed., Advanced Optical Cytometry: Methods and Disease Diagnoses (Wiley-VCH, 2011).

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Spatial distribution of the module of the vector complex amplitude of the electric field |E| Vm1 diffracted into the absorbing gold covering of a nanoparticle. Nanoshell core radius R1=70nm and coating thickness δ=15nm. The intensity of the illuminating laser light, linearly polarized along the Z axis, I=7.4MWcm2, with wavelength λ=800nm.

Fig. 2.
Fig. 2.

Kinetics of temperature in the center of the silica core and on the gold nanoshell’s outer surface (R=R2) in the (a) “equator” and (b) “pole” for five periods of pumping pulses.

Fig. 3.
Fig. 3.

Kinetics of the heat flux on the inner (R=R1) and outer (R=R2) surfaces of gold nanoshell in the (a) and (c) “equator” and (b) and (d) “pole” during the period of the fifth pumping pulse.

Fig. 4.
Fig. 4.

Kinetics of energy transmitted through the inner (R=R1) and outer (R=R2) surfaces of the gold nanoshell in (a) “equator” and (b) “pole” during the period of the fifth pumping pulse U(t0,t), t0=40ns.

Tables (1)

Tables Icon

Table 1. Nanoshell Environment Material Parameters Used in Calculations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Q=2πγuε2I/λ.
γ=|2D(R/R2)3C|2cos2θ+|D(R/R2)3+C|2sin2θ,R1RR2.
Δε=i·ωp2vFA(2πc)3λ3Leff.
Leff=4R23(1β1+β2/3).
cρTt=div(q·gradT)+Q.
F=q·grad(T),

Metrics