Abstract

A model of generalized optical anisotropy of polycrystalline networks of albumin and globulin of the effusion of appendicitis has been suggested. The method of Fourier phasometry of linear and circular birefringence with a spatial-frequency selection of the coordinate distributions for the differentiation of acute and gangrenous conditions have been analytically substantiated. A set of criteria of a polarization-phase differentiation of acute and gangrenous appendicitis states has been detected and substantiated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Tuchin, ed., Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science (Kluwer, 2004).
  2. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  3. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).
  4. O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
    [CrossRef]
  5. A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).
  6. O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
    [CrossRef]
  7. O. V. Angelsky, A. G. Ushenko, Y. A. Ushenko, Y. G. Ushenko, Y. Y. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
    [CrossRef]
  8. S. C. Cowin, “How is a tissue built?” J. Biomech. Eng. 122, 553–568 (2000).
    [CrossRef]
  9. A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
    [CrossRef]
  10. A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
    [CrossRef]
  11. O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).
  12. A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
    [CrossRef]
  13. V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
    [CrossRef]
  14. A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
    [CrossRef]
  15. S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
    [CrossRef]
  16. A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
    [CrossRef]
  17. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
    [CrossRef]
  18. O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).
  19. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
    [CrossRef]
  20. J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Dekker, 2002), pp. 237–274.
  21. M. J. Everett, K. Shoenenberger, B. W. Colston, and L. B. da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
    [CrossRef]
  22. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
    [CrossRef]
  23. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).
  24. S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
    [CrossRef]
  25. O. V. Angelsky, A. G. Ushenko, and Y. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
    [CrossRef]
  26. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
    [CrossRef]
  27. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser Polarimetry of Pathological Changes in Biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
    [CrossRef]
  28. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.
  29. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  30. R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).
  31. O. V. Angelsky, S. G. Hanson, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009).
    [CrossRef]
  32. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19, 660–672 (2011).
    [CrossRef]
  33. O. V. Angelsky, P. P. Maksimyak, S. G. Hanson, and V. V. Ryukhin, “New feasibilities for characterizing rough surfaces by optical-correlation techniques,” Appl. Opt. 40, 5693–5707 (2001).
    [CrossRef]
  34. O. V. Angelsky, D. N. Burkovets, P. P. Maksimyak, and S. G. Hanson, “Applicability of the singular optics concept for diagnostics of random and fractal rough surfaces,” Appl. Opt. 42, 4529–4540 (2003).
    [CrossRef]

2011 (1)

2010 (1)

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).

2009 (2)

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

O. V. Angelsky, S. G. Hanson, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009).
[CrossRef]

2008 (2)

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

2006 (1)

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

2005 (3)

O. V. Angelsky, A. G. Ushenko, Y. A. Ushenko, Y. G. Ushenko, Y. Y. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Y. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

2003 (1)

2002 (2)

A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

2001 (3)

O. V. Angelsky, P. P. Maksimyak, S. G. Hanson, and V. V. Ryukhin, “New feasibilities for characterizing rough surfaces by optical-correlation techniques,” Appl. Opt. 40, 5693–5707 (2001).
[CrossRef]

A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
[CrossRef]

A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
[CrossRef]

2000 (7)

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

S. C. Cowin, “How is a tissue built?” J. Biomech. Eng. 122, 553–568 (2000).
[CrossRef]

A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser Polarimetry of Pathological Changes in Biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

1999 (1)

1998 (2)

M. J. Everett, K. Shoenenberger, B. W. Colston, and L. B. da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

1997 (1)

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

1990 (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Angel’skii, O. V.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser Polarimetry of Pathological Changes in Biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

Angelsky, O. V.

O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19, 660–672 (2011).
[CrossRef]

O. V. Angelsky, S. G. Hanson, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Y. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. A. Ushenko, Y. G. Ushenko, Y. Y. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, D. N. Burkovets, P. P. Maksimyak, and S. G. Hanson, “Applicability of the singular optics concept for diagnostics of random and fractal rough surfaces,” Appl. Opt. 42, 4529–4540 (2003).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

O. V. Angelsky, P. P. Maksimyak, S. G. Hanson, and V. V. Ryukhin, “New feasibilities for characterizing rough surfaces by optical-correlation techniques,” Appl. Opt. 40, 5693–5707 (2001).
[CrossRef]

Arkhelyuk, A. D.

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser Polarimetry of Pathological Changes in Biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

Arkhelyuk, O. D.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Bachyns’ka, I.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Burch, J. M.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

Burkovets, D. N.

O. V. Angelsky, D. N. Burkovets, P. P. Maksimyak, and S. G. Hanson, “Applicability of the singular optics concept for diagnostics of random and fractal rough surfaces,” Appl. Opt. 42, 4529–4540 (2003).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser Polarimetry of Pathological Changes in Biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Colston, B. W.

Cowin, S. C.

S. C. Cowin, “How is a tissue built?” J. Biomech. Eng. 122, 553–568 (2000).
[CrossRef]

da Silva, L. B.

de Boer, J. F.

J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Dekker, 2002), pp. 237–274.

Ducros, M. G.

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Dekker, 2002), pp. 237–274.

Ermolenko, S. B.

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser Polarimetry of Pathological Changes in Biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

Everett, M. J.

Gavrila, C.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Gerrard, A.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

Gorodyns’ka, N. V.

Gorsky, M. P.

Goudail, F.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Gruia, I.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Gryhoryshyn, P.

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Grynchuk, F. V.

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Guminetskiy, S. H.

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Guminetsky, S.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Hanson, S. G.

Istratiy, V.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).

Ivashko, P.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Jozwicki, R.

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).

Maksimyak, A. P.

Maksimyak, P. P.

Mikhailova, A.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Milner, T. E.

J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Dekker, 2002), pp. 237–274.

Misevich, I. Z.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).

Moiysuk, T. G.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).

Motrych, A. V.

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Nelson, J. S.

J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Dekker, 2002), pp. 237–274.

Numan, O. K.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).

Patorski, K.

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

Peresunko, A. P.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).

Pishak, O.

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Pishak, V.

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Pishak, V. P.

O. V. Angelsky, A. G. Ushenko, Y. A. Ushenko, Y. G. Ushenko, Y. Y. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

Polyanskiy, I. P.

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Prahl, S. A.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Prydij, A.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Rudeychuk, V.

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Ryukhin, V. V.

Shoenenberger, K.

Srinivas, S. M.

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Dekker, 2002), pp. 237–274.

Toma, O.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Tomka, Y. Y.

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. A. Ushenko, Y. G. Ushenko, Y. Y. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).

Ushenko, A.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Ushenko, A. G.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Y. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. A. Ushenko, Y. G. Ushenko, Y. Y. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
[CrossRef]

A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
[CrossRef]

A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser Polarimetry of Pathological Changes in Biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

Ushenko, O. G.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Ushenko, Y. A.

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. A. Ushenko, Y. G. Ushenko, Y. Y. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser Polarimetry of Pathological Changes in Biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

Ushenko, Y. G.

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Y. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. A. Ushenko, Y. G. Ushenko, Y. Y. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

van Gemert, M. J.

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

Vladychenko, K.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Welch, A. J.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Yermolenko, S.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Zenkova, C. Y.

Zenkova, C. Yu.

Zimnyakov, D.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Adv. Opt. Tech. (1)

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Biomech. Eng. (1)

S. C. Cowin, “How is a tissue built?” J. Biomech. Eng. 122, 553–568 (2000).
[CrossRef]

J. Biomed. Opt. (3)

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. A. Ushenko, Y. G. Ushenko, Y. Y. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Y. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

J. Phys. D (1)

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Laser Phys. (2)

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Opt. Appl. (1)

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

Opt. Express (2)

Opt. Lett. (2)

Opt. Spectrosc. (7)

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser Polarimetry of Pathological Changes in Biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
[CrossRef]

A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
[CrossRef]

A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
[CrossRef]

Proc. SPIE (5)

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Other (6)

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Dekker, 2002), pp. 237–274.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

V. Tuchin, ed., Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science (Kluwer, 2004).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

An optical diagram polarization Fourier polarimeter, where 1—He-Ne laser; 2—a collimator; 3—a stationary quarter-wave plate; 5, 9—mechanically mobile quarter-wave plates; 4, 10—a polarizer and analyzer respectively; 6—an object of study; 7, 8—a polarization micro-objectives; 11—CCD camera; 12—a personal computer. F(x1,y1)—object plane, F(x2,y2)—image plane, F(u,v)—Fourier plane with the diaphragms.

Fig. 2.
Fig. 2.

Phase maps (a), (c) histograms (b), (d) distribution of linear birefringence smear of effusions of acute [(a), (b)] and [(c), (d)] gangrenous appendicitis.

Fig. 3.
Fig. 3.

Phase maps (a), (c) histograms (b), (d) distribution of circular birefringence smear of effusions of acute [(a), (b)] and gangrenous [(c), (d)] appendicitis.

Tables (2)

Tables Icon

Table 1. Parameters of the Statistic Structure Maps of Linear Birefringence Phase of Polycrystalline Effusion Samples

Tables Icon

Table 2. Parameters of the Statistical Structure of the Phase Maps of Circular Birefringence Polycrystalline Networks of Effusion

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

{H}=eτ1001
{Q}=[sin2ρ+cos2ρexp(iδ)]11[sinρcosρ(1exp(iδ))]12[sinρcosρ(1exp(iδ))]12[cos2ρ+sin2ρexp(iδ)]22
{(Ex(ρ,δ)Ey(ρ,δ))={Q}(E0xE0y);(Ex(θ)Ey(θ))={A}(E0xE0y).
(E0xE0y)
{(Ex(ρ,δ)Ey(ρ,δ)),(Ex(θ)Ey(θ))
{Ux(Xλf,Yλf)Ux(ν,μ)=FT(Ex(x,y)),Uy(Xλf,Yλf)Uy(ν,μ)=FT(Ey(x,y)).
ν=Xλf
μ=Yλf.
{U^(δ,ν,μ)=R(Δν,Δμ)U(ν,μ);U˙(θ,ν,μ)=R1(Δν,Δμ)U(ν,μ).
[E^x(δ,x,y)E˙x(θ,x,y)]
[E^y(δ,x,y)E˙y(θ,x,y)]
{[E^x(δ,x,y)E˙x(θ,x,y)]=FT1[R(Δν,Δμ)U^x(ν,μ)R1(Δν,Δμ)U˙x(ν,μ)];[E^y(δ,x,y)E˙y(θ,x,y)]=FT1[R(Δν,Δμ)U^y(ν,μ)R1(Δν,Δμ)U˙y(ν,μ)].
E^(x,y)=0,5{P2}{Φ2}{Q}{Φ1}{P1}E0.
{E0(45°)=(11);{P1}=1111;{P2}=1111;{Φ1}=100i;{Φ2}=i001.
E^(x,y)×E^*(x,y)=I0sin20.5δ(x,y)=Iδ(x,y),
δ(x,y)=2arcsinIδ(x,y)I0.
I(δ){0δ=0;1δ=π
Iδ(x,y)I0
E˙(x,y)=0,5{P2}{A}{P1}E0.
E˙(x,y)×E˙*(x,y)=I0sin22θ(x,y)=Iθ(x,y);
θ(x,y)=arcsin0.5Iθ(x,y)I0.
q={δ(x,y)θ(x,y)
Z1=1Ni=1N|(q)i|,Z2=1Ni=1N(q)i2,Z3=1(Z2)31Ni=1N(q)i3,Z4=1(Z2)41Ni=1N(q)i4.
(ν=Xλfiμ=Yλf)
q={δ(x,y)θ(x,y),
q={δ(x,y)R=30pix×30pix;θ(x,y)R1=20pix×20pix
Sp=aa+b100%

Metrics