Abstract

We have theoretically shown that Bragg twisted elliptical fibers manifest, in certain spectral regions, the property of topological activity—the ability to change in the reflected field the topological charge of incoming optical vortices and fundamental modes by two units. This property could be used for narrowband generation of optical vortices from Gaussian beams and for changing the topological charge of incoming optical vortices.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).
  2. J. Xavier, S. Vyas, P. Senthilkumaran, C. Denz, and J. Joseph, “Sculptured 3D twister superlattices embedded with tunable vortex spirals,” Opt. Lett. 36, 3512–3514 (2011).
    [CrossRef]
  3. W.-X. Huang, Y. Zhang, X.-M. Tang, L.-S. Cai, J.-W. Zhao, L. Zhou, Q.-J. Wang, C.-P. Huang, and Y.-Y. Zhu, “Optical properties of a planar metamaterial with chiral symmetry breaking,” Opt. Lett. 36, 3359–3361 (2011).
    [CrossRef]
  4. J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 095102 (2011).
    [CrossRef]
  5. M. He, J. Han, Z. Tian, J. Gu, and Q. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik 122, 1676–1679 (2011).
    [CrossRef]
  6. M. D. Turner, G. E. Schröder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express 19, 10001–10008 (2011).
    [CrossRef]
  7. M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
    [CrossRef]
  8. Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett. 35, 2588–2590 (2010).
    [CrossRef]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [CrossRef]
  10. N. Wongkasem, C. Kamtongdee, A. Akyurtlu, and K. A. Marx, “Artificial multiple helices: polarization and EM properties,” J. Opt. 12, 075102 (2010).
    [CrossRef]
  11. M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
    [CrossRef]
  12. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
    [CrossRef]
  13. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
    [CrossRef]
  14. C. N. Alexeyev, A. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Topological activity of layered chiral optical Bragg waveguides,” J. Opt. 13, 095701 (2011).
    [CrossRef]
  15. C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “The effect of spin-orbit coupling on the structure of the stopband in helical-core optical fibres,” J. Opt. A 10, 085006(2008).
    [CrossRef]
  16. C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008).
    [CrossRef]
  17. C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Helical core optical fibers maintaining propagation of a solitary optical vortex,” Phys. Rev. A 78, 013813 (2008).
    [CrossRef]
  18. C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation of optical vortices in layered helical waveguides,” Phys. Rev. A 83, 063820 (2011).
    [CrossRef]
  19. C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–604 (1991).
    [CrossRef]
  20. K. S. Lee and T. Erdogan, “Fiber mode conversion with tilted gratings in an optical fiber,” J. Opt. Soc. Am. A 18, 1176–1185 (2001).
    [CrossRef]
  21. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Multi-helix chiral fibre filters of higher-order optical vortices,” J. Opt. A 9, 537–542 (2007).
    [CrossRef]
  22. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Narrowband reflective mode converter on the basis of a twisted elliptical core fibre,” J. Opt. A 10, 015301 (2008).
    [CrossRef]
  23. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
    [CrossRef]
  24. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Fibre vortex mirror based on a twisted elliptical-core optical fibre,” J. Opt. A 9, 931–935 (2007).
    [CrossRef]
  25. V. I. Kopp, V. M. Churikov, G. Zhang, J. Singer, C. W. Draper, N. Chao, D. Neugroschl, and A. Z. Genack, “Single- and double-helix chiral fiber sensors,” J. Opt. Soc. Am. B 24, A48–A52 (2007).
    [CrossRef]
  26. C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A 6, 824–832 (2004).
    [CrossRef]
  27. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1985).

2011 (8)

J. Xavier, S. Vyas, P. Senthilkumaran, C. Denz, and J. Joseph, “Sculptured 3D twister superlattices embedded with tunable vortex spirals,” Opt. Lett. 36, 3512–3514 (2011).
[CrossRef]

W.-X. Huang, Y. Zhang, X.-M. Tang, L.-S. Cai, J.-W. Zhao, L. Zhou, Q.-J. Wang, C.-P. Huang, and Y.-Y. Zhu, “Optical properties of a planar metamaterial with chiral symmetry breaking,” Opt. Lett. 36, 3359–3361 (2011).
[CrossRef]

J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 095102 (2011).
[CrossRef]

M. He, J. Han, Z. Tian, J. Gu, and Q. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik 122, 1676–1679 (2011).
[CrossRef]

M. D. Turner, G. E. Schröder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express 19, 10001–10008 (2011).
[CrossRef]

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Topological activity of layered chiral optical Bragg waveguides,” J. Opt. 13, 095701 (2011).
[CrossRef]

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation of optical vortices in layered helical waveguides,” Phys. Rev. A 83, 063820 (2011).
[CrossRef]

2010 (3)

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

2008 (4)

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “The effect of spin-orbit coupling on the structure of the stopband in helical-core optical fibres,” J. Opt. A 10, 085006(2008).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Helical core optical fibers maintaining propagation of a solitary optical vortex,” Phys. Rev. A 78, 013813 (2008).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Narrowband reflective mode converter on the basis of a twisted elliptical core fibre,” J. Opt. A 10, 015301 (2008).
[CrossRef]

2007 (3)

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Fibre vortex mirror based on a twisted elliptical-core optical fibre,” J. Opt. A 9, 931–935 (2007).
[CrossRef]

V. I. Kopp, V. M. Churikov, G. Zhang, J. Singer, C. W. Draper, N. Chao, D. Neugroschl, and A. Z. Genack, “Single- and double-helix chiral fiber sensors,” J. Opt. Soc. Am. B 24, A48–A52 (2007).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Multi-helix chiral fibre filters of higher-order optical vortices,” J. Opt. A 9, 537–542 (2007).
[CrossRef]

2006 (1)

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
[CrossRef]

2004 (1)

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A 6, 824–832 (2004).
[CrossRef]

2001 (2)

1997 (1)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[CrossRef]

1991 (1)

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–604 (1991).
[CrossRef]

Akyurtlu, A.

N. Wongkasem, C. Kamtongdee, A. Akyurtlu, and K. A. Marx, “Artificial multiple helices: polarization and EM properties,” J. Opt. 12, 075102 (2010).
[CrossRef]

Alexeyev, A. N.

C. N. Alexeyev, A. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Topological activity of layered chiral optical Bragg waveguides,” J. Opt. 13, 095701 (2011).
[CrossRef]

Alexeyev, C. N.

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation of optical vortices in layered helical waveguides,” Phys. Rev. A 83, 063820 (2011).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Topological activity of layered chiral optical Bragg waveguides,” J. Opt. 13, 095701 (2011).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Narrowband reflective mode converter on the basis of a twisted elliptical core fibre,” J. Opt. A 10, 015301 (2008).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Helical core optical fibers maintaining propagation of a solitary optical vortex,” Phys. Rev. A 78, 013813 (2008).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “The effect of spin-orbit coupling on the structure of the stopband in helical-core optical fibres,” J. Opt. A 10, 085006(2008).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Multi-helix chiral fibre filters of higher-order optical vortices,” J. Opt. A 9, 537–542 (2007).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Fibre vortex mirror based on a twisted elliptical-core optical fibre,” J. Opt. A 9, 931–935 (2007).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A 6, 824–832 (2004).
[CrossRef]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Cai, L.-S.

Chao, N.

Churikov, V. M.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Denz, C.

Draper, C. W.

Erdogan, T.

Fadeyeva, T. A.

C. N. Alexeyev, A. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Topological activity of layered chiral optical Bragg waveguides,” J. Opt. 13, 095701 (2011).
[CrossRef]

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation of optical vortices in layered helical waveguides,” Phys. Rev. A 83, 063820 (2011).
[CrossRef]

Fischer, H.

Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Gao, W.

J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 095102 (2011).
[CrossRef]

Genack, A. Z.

Gorshkov, V. N.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[CrossRef]

Grosse-Brauckmann, K.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

Gu, J.

M. He, J. Han, Z. Tian, J. Gu, and Q. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik 122, 1676–1679 (2011).
[CrossRef]

Gu, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

M. D. Turner, G. E. Schröder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express 19, 10001–10008 (2011).
[CrossRef]

Han, J.

M. He, J. Han, Z. Tian, J. Gu, and Q. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik 122, 1676–1679 (2011).
[CrossRef]

He, M.

M. He, J. Han, Z. Tian, J. Gu, and Q. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik 122, 1676–1679 (2011).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).

Heckenberg, N. R.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[CrossRef]

Huang, C.-P.

Huang, W.-X.

Hung, J.

J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 095102 (2011).
[CrossRef]

Hyde, S. T.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

Joseph, J.

Kamtongdee, C.

N. Wongkasem, C. Kamtongdee, A. Akyurtlu, and K. A. Marx, “Artificial multiple helices: polarization and EM properties,” J. Opt. 12, 075102 (2010).
[CrossRef]

Kopp, V. I.

Lapin, B. P.

C. N. Alexeyev, A. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Topological activity of layered chiral optical Bragg waveguides,” J. Opt. 13, 095701 (2011).
[CrossRef]

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation of optical vortices in layered helical waveguides,” Phys. Rev. A 83, 063820 (2011).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Helical core optical fibers maintaining propagation of a solitary optical vortex,” Phys. Rev. A 78, 013813 (2008).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “The effect of spin-orbit coupling on the structure of the stopband in helical-core optical fibres,” J. Opt. A 10, 085006(2008).
[CrossRef]

Lee, K. S.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1985).

Lu, P. X.

Lu, Y. F.

Malos, J. T.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[CrossRef]

Marx, K. A.

N. Wongkasem, C. Kamtongdee, A. Akyurtlu, and K. A. Marx, “Artificial multiple helices: polarization and EM properties,” J. Opt. 12, 075102 (2010).
[CrossRef]

Mecke, K.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

Nelson, K. T.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–604 (1991).
[CrossRef]

Neshev, D. N.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

Neugroschl, D.

Poole, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–604 (1991).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Saba, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Schröder-Turk, G. E.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

M. D. Turner, G. E. Schröder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express 19, 10001–10008 (2011).
[CrossRef]

Senthilkumaran, P.

Singer, J.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1985).

Soskin, M. S.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[CrossRef]

Tam, W. Y.

J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 095102 (2011).
[CrossRef]

Tang, X.-M.

Thiel, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Tian, Z.

M. He, J. Han, Z. Tian, J. Gu, and Q. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik 122, 1676–1679 (2011).
[CrossRef]

Townsend, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–604 (1991).
[CrossRef]

Turner, M. D.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

M. D. Turner, G. E. Schröder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express 19, 10001–10008 (2011).
[CrossRef]

Vasnetsov, M. V.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[CrossRef]

Volyar, A. V.

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Narrowband reflective mode converter on the basis of a twisted elliptical core fibre,” J. Opt. A 10, 015301 (2008).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Multi-helix chiral fibre filters of higher-order optical vortices,” J. Opt. A 9, 537–542 (2007).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Fibre vortex mirror based on a twisted elliptical-core optical fibre,” J. Opt. A 9, 931–935 (2007).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
[CrossRef]

von Freymann, G.

Vyas, S.

Wang, Q.-J.

Wegener, M.

M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Wongkasem, N.

N. Wongkasem, C. Kamtongdee, A. Akyurtlu, and K. A. Marx, “Artificial multiple helices: polarization and EM properties,” J. Opt. 12, 075102 (2010).
[CrossRef]

Xavier, J.

Xing, Q.

M. He, J. Han, Z. Tian, J. Gu, and Q. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik 122, 1676–1679 (2011).
[CrossRef]

Yang, Z. Y.

Yavorsky, M. A.

C. N. Alexeyev, A. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Topological activity of layered chiral optical Bragg waveguides,” J. Opt. 13, 095701 (2011).
[CrossRef]

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation of optical vortices in layered helical waveguides,” Phys. Rev. A 83, 063820 (2011).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Helical core optical fibers maintaining propagation of a solitary optical vortex,” Phys. Rev. A 78, 013813 (2008).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Narrowband reflective mode converter on the basis of a twisted elliptical core fibre,” J. Opt. A 10, 015301 (2008).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “The effect of spin-orbit coupling on the structure of the stopband in helical-core optical fibres,” J. Opt. A 10, 085006(2008).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Multi-helix chiral fibre filters of higher-order optical vortices,” J. Opt. A 9, 537–542 (2007).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Fibre vortex mirror based on a twisted elliptical-core optical fibre,” J. Opt. A 9, 931–935 (2007).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A 6, 824–832 (2004).
[CrossRef]

Zhang, G.

Zhang, Y.

Zhao, J.-W.

Zhao, M.

Zhou, L.

Zhu, Y.-Y.

J. Lightwave Technol. (1)

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–604 (1991).
[CrossRef]

J. Opt. (3)

J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 095102 (2011).
[CrossRef]

N. Wongkasem, C. Kamtongdee, A. Akyurtlu, and K. A. Marx, “Artificial multiple helices: polarization and EM properties,” J. Opt. 12, 075102 (2010).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Topological activity of layered chiral optical Bragg waveguides,” J. Opt. 13, 095701 (2011).
[CrossRef]

J. Opt. A (6)

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “The effect of spin-orbit coupling on the structure of the stopband in helical-core optical fibres,” J. Opt. A 10, 085006(2008).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A 6, 824–832 (2004).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Multi-helix chiral fibre filters of higher-order optical vortices,” J. Opt. A 9, 537–542 (2007).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Narrowband reflective mode converter on the basis of a twisted elliptical core fibre,” J. Opt. A 10, 015301 (2008).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Fibre vortex mirror based on a twisted elliptical-core optical fibre,” J. Opt. A 9, 931–935 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (4)

Optik (1)

M. He, J. Han, Z. Tian, J. Gu, and Q. Xing, “Negative refractive index in chiral spiral metamaterials at terahertz frequencies,” Optik 122, 1676–1679 (2011).
[CrossRef]

Phys. Rev. A (4)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Helical core optical fibers maintaining propagation of a solitary optical vortex,” Phys. Rev. A 78, 013813 (2008).
[CrossRef]

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation of optical vortices in layered helical waveguides,” Phys. Rev. A 83, 063820 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[CrossRef]

Prog. Opt. (1)

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Other (2)

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1985).

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Model of a twisted elliptical fiber. H is the twist pitch, (X,Y,Z) is the Cartesian frame, and (r,φ) are the polar coordinates introduced in the transverse cross-section.

Fig. 2.
Fig. 2.

Zero-approximation spectra of l=0 and l=2 twisted fiber modes versus lattice vector q. The type of the mode is indicated at the corresponding curve. Insets, repulsion of spectral branches due to mode coupling; the fiber’s parameters are nco=1.5, Δ=0.01, δ=0.08, r0=10λ0, λ0=632.8nm, H=2.1×107m.

Fig. 3.
Fig. 3.

(a) Reflection coefficient |R2|2 for reflected mode |1,2 and (b) transmission coefficient |P1|2 for the outcoming mode |1,0 versus wavelength of the incoming field |1,0; the fiber’s length d=2.11mm, nco=1.5, Δ=0.01, δ=0.08, r0=10λ0, λ0=632.8nm, H=2.1×107m. The other coefficients are negligibly small (not shown).

Fig. 4.
Fig. 4.

Zero-approximation spectra of l=1 and l=3 twisted fiber modes versus lattice vector q. Insets, repulsion due to mode coupling; the fiber’s length d=2.11mm, nco=1.5, Δ=0.01, δ=0.08, r0=10λ0, λ0=632.8nm, H2.1×107m.

Fig. 5.
Fig. 5.

(a) Reflection coefficient |R2|2 for reflected mode |1,3 (b) and transmission coefficient |P1|2 for the outcoming mode |1,1 versus wavelength of the incoming field |1,1. The other coefficients are negligibly small (not shown).

Fig. 6.
Fig. 6.

Reflection coefficient |R1|2 for reflected |1,1mode versus wavelength of the incoming field |1,1.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

n2(r,φ,z)=nco2(12Δf(r))2nco2Δδrfrcos(2(φqz)).
{2r˜2+1r˜r˜+1r˜22φ˜2+(iβqφ˜)2+k2n˜22k2nco2r˜Δδfrcos2φ˜}et=0.
(H^0+V^)|e=β2|e,
H^0=(2r˜2+1r˜r˜+1r˜22φ˜2+k2n˜22iβqφ˜+q22φ˜2),V^=2k2nco2r˜Δδfrcos2φ˜.
|σ,l(1iσ)exp(ilφ˜)Fl(r),
(2r2+1rr+k2n˜2l2r2β˜l2)Fl(r)=0.
βl(1,2)=±β˜l+lq.
β1,2=±β˜0,β3,4=±β˜2+2q,β5,6=±β˜22q.
(β˜02β2AAβ˜22(β2q)2)xa=0,
(2β˜0δaAA2β˜2(δa2ε))xa=0.
β1,2=β˜0+ε±ε2Γ2,β3,4=β˜0+ε±ε2Γ2,
|ψ1a={c1|1,0ei(β˜0+ε)z+c2|1,2ei(β˜2+ε)z}eizε2Γ2,|ψ2a={c2|1,0ei(β˜0+ε)z+c1|1,2ei(β˜2+ε)z}eizε2Γ2,|ψ1b={c2|1,0ei(β˜0+ε)z+c1|1,2ei(β˜2+ε)z}eizε2Γ2,|ψ2b={c1|1,0ei(β˜0+ε)z+c2|1,2ei(β˜2+ε)z}eizε2Γ2,
|Φ1(z0)=|1,0eikz+(R1|1,0+R2|1,2+R3|1,2)eikz,|Φ2(0<z<d)=T1|ψ1a+T2|ψ2a+T3|ψ1b+T4|ψ2b+T5|1,2eiβ˜2z+T6|1,2eiβ˜2z|Φ3(zd)=(P1|1,0+P2|1,2+P3|1,2)eik(zd).
β1,2=±β˜1+q,β3,4=±β˜1q,β5,6=±β˜3+3q,β7,8=±β˜33q,
c(β˜1,0),a(β˜1+β˜32,3β˜1+β˜32),b(β˜1+β˜32,3β˜1β˜32).
|ς1a={s1|1,1ei(β˜1+ε)z+s2|1,3ei(β˜3+ε)z}eizε2Θ2,|ς2a={s2|1,1ei(β˜1+ε)z+s1|1,3ei(β˜3+ε)z}eizε2Θ2,|ς1b={s2|1,1ei(β˜1+ε)z+s1|1,3ei(β˜3+ε)z}eizε2Θ2,|ς2b={s1|1,1ei(β˜1+ε)z+s2|1,3ei(β˜3+ε)z}eizε2Θ2,
|τ1={t1|1,1ei(β˜1+εc)+t2|1,1ei(β˜1+εc)}eizεc2Λ2,|τ2={t2|1,1ei(β˜1+εc)+t1|1,1ei(β˜1+εc)}eizεc2Λ2,
|Φ1(z0)=|1,1eikz+(R1|1,1+R2|1,3)eikz,|Φ2(0<z<d)=T1|ς1a+T2|ς2a+T3|1,1eiβ˜1z+T4|1,3eiβ˜3z,|Φ3(zd)=(P1|1,1+P2|1,3)eik(zd),
|Φ1(z0)=|1,1eikz+(R1|1,1+R2|1,1)eikz,|Φ2(0zd)=T1|τ1+T2|τ2+T3|1,1eiβ˜1z+T4|1,1eiβ˜1z,|Φ3(zd)=(P1|1,1+P2|1,1)eik(zd).

Metrics