Abstract

The paper presents a new method for determining the degree of coherence of superposing plane linearly polarized waves converging at the angle of 90°. The spatial modulation of polarization, which causes the spatial modulation of the averaged values of the Poynting vector, presets the modulation of the volume energy density. Such an inhomogeneous optical field can affect nano-sized particles randomly caught in this field. The paper shows that the maximum velocity of “trapping” the particles into the regions of maximum averaged values of the Poynting vector determines the degree of coherence of interacting waves.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  2. T. Setala, J. Tervo, and A. T. Friberg, “Stokes parameters and polarization contrasts in Young’s interference experiment,” Opt. Lett. 31, 2208–2210 (2006).
    [CrossRef]
  3. T. Setala, J. Tervo, and A. T. Friberg, “Contrasts of Stokes parameters in Young’s interference experiment and electromagnetic degree of coherence,” Opt. Lett. 31, 2669–2671 (2006).
    [CrossRef]
  4. O. V. Angelsky, N. N. Dominikov, P. P. Maksimyak, and T. Tudor, “Experimental revealing of polarization waves,” Appl. Opt. 38, 3112–3117 (1999).
    [CrossRef]
  5. O. V. Angelsky, R. N. Besaha, and I. I. Mokhun, “Appearance of wave front dislocations under interference among beams with simple wave fronts,” Opt. Appl. 27, 272–278 (1997).
  6. O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).
  7. O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
    [CrossRef]
  8. O. V. Angelsky, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On the feasibility for estimating the degree of coherence of waves at near field,” Appl. Opt. 48, 2784–278 (2009).
    [CrossRef]
  9. O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009).
    [CrossRef]
  10. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19, 660–672 (2011).
    [CrossRef]
  11. C. Y. Zenkova, M. P. Gorsky, P. P. Maksimyak, and A. P. Maksimyak, “Optical currents in vector field,” Appl. Opt. 50, 1105–1112 (2011).
    [CrossRef]
  12. O. V. Angelsky, N. N. Dominikov, P. P. Maksimyak, and T. Tudor, “Experimental revealing of polarization waves,” Appl. Opt. 38, 3112–3117 (1999).
    [CrossRef]
  13. M. Mujait, A. Dogariu, and E. Wolf, “A law of interference of electromagnetic beams of any state of coherence and polarization and the Fresnel–Arago interference laws,” J. Opt. Soc. Am. A 21, 2414–2417 (2004).
    [CrossRef]
  14. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
    [CrossRef]
  15. P. Refregier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13, 6051–6060 (2005).
    [CrossRef]
  16. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  17. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef]
  18. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006).
  19. A. Rohrbach and E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001).
    [CrossRef]
  20. Y. A. Nevskiy and A. N. Osiptsov, “Modeling of the suspension gravitational convection,” Letters to Journal of Experimental and Theoretical Physics 35, 98–105 (2009) (in Russian).

2011 (2)

2009 (3)

2006 (3)

2005 (2)

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

P. Refregier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13, 6051–6060 (2005).
[CrossRef]

2004 (1)

2001 (1)

2000 (1)

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

1999 (2)

1997 (1)

O. V. Angelsky, R. N. Besaha, and I. I. Mokhun, “Appearance of wave front dislocations under interference among beams with simple wave fronts,” Opt. Appl. 27, 272–278 (1997).

1986 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Angel’skii, O. V.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Angelsky, O. V.

Arkhelyuk, O. D.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006).

Besaha, R. N.

O. V. Angelsky, R. N. Besaha, and I. I. Mokhun, “Appearance of wave front dislocations under interference among beams with simple wave fronts,” Opt. Appl. 27, 272–278 (1997).

Bjorkholm, J. E.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Burkovets, D. N.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Chu, S.

Dogariu, A.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

M. Mujait, A. Dogariu, and E. Wolf, “A law of interference of electromagnetic beams of any state of coherence and polarization and the Fresnel–Arago interference laws,” J. Opt. Soc. Am. A 21, 2414–2417 (2004).
[CrossRef]

Dominikov, N. N.

Dziedzic, J. M.

Ellis, J.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Friberg, A. T.

Gorodyns’ka, N. V.

Gorsky, M. P.

Goudail, F.

Hanson, S. G.

Maksimyak, A. P.

Maksimyak, P. P.

Mokhun, I. I.

O. V. Angelsky, R. N. Besaha, and I. I. Mokhun, “Appearance of wave front dislocations under interference among beams with simple wave fronts,” Opt. Appl. 27, 272–278 (1997).

Mujait, M.

Nevskiy, Y. A.

Y. A. Nevskiy and A. N. Osiptsov, “Modeling of the suspension gravitational convection,” Letters to Journal of Experimental and Theoretical Physics 35, 98–105 (2009) (in Russian).

Osiptsov, A. N.

Y. A. Nevskiy and A. N. Osiptsov, “Modeling of the suspension gravitational convection,” Letters to Journal of Experimental and Theoretical Physics 35, 98–105 (2009) (in Russian).

Ponomarenko, S.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Refregier, P.

Rohrbach, A.

Setala, T.

Stelzer, E. H. K.

Tervo, J.

Tomka, Y. Y.

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

Tudor, T.

Ushenko, A. G.

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

Ushenko, O. G.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Ushenko, Y. G.

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

Ushenko, Yu. A.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Wolf, E.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

M. Mujait, A. Dogariu, and E. Wolf, “A law of interference of electromagnetic beams of any state of coherence and polarization and the Fresnel–Arago interference laws,” J. Opt. Soc. Am. A 21, 2414–2417 (2004).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Zenkova, C. Y.

Zenkova, C. Y.

Zenkova, C. Yu.

Appl. Opt. (4)

J. Biomed. Opt. (1)

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

Laser Phys. (1)

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Letters to Journal of Experimental and Theoretical Physics (1)

Y. A. Nevskiy and A. N. Osiptsov, “Modeling of the suspension gravitational convection,” Letters to Journal of Experimental and Theoretical Physics 35, 98–105 (2009) (in Russian).

Opt. Appl. (1)

O. V. Angelsky, R. N. Besaha, and I. I. Mokhun, “Appearance of wave front dislocations under interference among beams with simple wave fronts,” Opt. Appl. 27, 272–278 (1997).

Opt. Commun. (1)

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Other (2)

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The superposition of plane waves of equal amplitudes linearly polarized at the incidence plane, with an interference angle of 90°. Periodical spatial modulation of polarization takes place in the plane of incidence.

Fig. 2.
Fig. 2.

The time dependence of the velocity of the tested particles in the inhomogeneous optical field. The initial localization of the particles is arbitrary.

Fig. 3.
Fig. 3.

The time dependence of the velocity of the tested particles in the inhomogeneous optical field. The initial localization of the particles is arbitrary.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S=εε0μμ0i,j{ϕij(1)(r)+ϕij(2)(r)+2tr[W(r1,r1,0)]tr[W(r2,r2,0)]·|ηij(1,2)|cos[αij(1,2)]·cos[δe]},
ηij(r1,r2,t)=Wij(r1,r2,t)tr[W(r1,r1,0)]·tr[W(r2,r2,0)]=Wij(r1,r2,t)ijWii(r1,r1,0)Wjj(r2,r2,0).
E2=4πScμεandFgrad=12nmαE2=2πnmαcμεS.
Fopt=Fgrad,
F=Fst+FA+Fm+FBB+Fg.
mdvdt=Fopt+6πηrv,
v=1m(e6πηrmt1)Fopt.

Metrics