Abstract

Here we report the optical analysis of protein adsorption sensitivity of titanium (Ti), Ti6Al4V, and Ti35Nb6Ta. The optical sensor used was a diffractive optical element based sensor, which analyzes magnitude and coherence of probe beam reflected from the measured surfaces. Also, the roughness and other necessary parameters were taken into account on the final verdict. The material Ti35Nb6Ta showed positive initial reaction to the human plasma fibrinogen, which was the protein used. The Ti35Nb6Ta was observed to be more active than the grade 2 titanium.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, “Mediation of biomaterial-cell interactions by adsorbed proteins: A review,” Tissue Eng. 11, 1–18 (2005).
  2. R. Gorman, G. Stoner, and A. Catlin, “The adsorption of fibrinogen. An electron microscope study,” J. Phys. Chem. 75, 2103–2107 (1971).
    [CrossRef]
  3. D. Kim, H. Blanch, and C. Radke, “Direct imaging of lysozyme adsorption onto mica by atomic force microscopy,” Langmuir 18, 5841–5850 (2002).
    [CrossRef]
  4. D. Cullen and C. Lowe, “AFM studies of protein adsorption. 1. time-resolved protein adsorption to highly oriented pyrolytic-graphite,” J. Colloid Interf. Sci. 166, 102–108 (1994).
  5. T. Ta, M. Sykes, and M. McDermott, “Real-time observation of plasma protein film formation on well-defined surfaces with scanning force microscopy,” Langmuir 14, 2435–2443 (1998).
    [CrossRef]
  6. S. G. Thakurta and A. Subramanian, “Evaluation of in situ albumin binding surfaces: a study of protein adsorption and platelet adhesion,” J. Mater. Sci. 22, 1–13 (2010).
  7. N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.
  8. N. Penttinen, S. Hason, L. Joska, L. Cvrcek, and R. Silvennoinen, “On the analysis of optical signals from Ti35Nb6Ta and Ti6Al4V surfaces,” Proc. SPIE 8338, 83380Q (2011).
    [CrossRef]
  9. C. E. Hall and H. S. Slayter, “The fibrinogen molecule: Its size, shape, and mode of polymerization,” J. Biophys. Biochem. Cytol. 5, 11–18 (1959).
  10. N. Penttinen, S. Hason, M. Silvennoinen, L. Joska, and R. Silvennoinen, “Comparison of optical models and signals from XPS and VASE characterized titanium after PBS immersion,” Opt. Commun. 285, 965–968 (2012).
  11. S. Lousinian and S. Logothetidis, “In-situ and real-time protein adsorption study by spectroscopic ellipsometry,” Thin Solid Films 516, 8002–8008 (2008).
    [CrossRef]
  12. M. Malmsten, “Ellipsometry studies of protein adsorption at lipid surfaces,” J. Colloid Interf. Sci. 168, 247–254(1994).
  13. M. Malmsten, “Ellipsometry studies of fibronectin adsorption,” Coll. Surfaces B 3, 371–381 (1995).
  14. R. Silvennoinen, K.-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).
  15. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials 22, 1241–1251 (2001).
    [CrossRef]
  16. M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng. A 243, 231–236 (1998).
  17. R. Silvennoinen, S. Hason, V. Vetterl, N. Penttinen, M. Silvennoinen, K. Myller, P. Cernochova, S. Bartakova, P. Prachar, and L. Cvrcek, “Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples,” Appl. Opt. 49, 5583–5591 (2010).
    [CrossRef]
  18. R. Silvennoinen, V. Vetterl, S. Hason, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrcek, J. Vanek, and P. Prachar, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140 (2008).
    [CrossRef]
  19. R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.
  20. N. Penttinen, M. Silvennoinen, S. Hason, and R. Silvennoinen, “Directional sensing of protein adsorption on titanium with a light-induced periodic structure,” J. Phys. Chem. C 115, 12951–12959 (2011).
    [CrossRef]

2012 (1)

N. Penttinen, S. Hason, M. Silvennoinen, L. Joska, and R. Silvennoinen, “Comparison of optical models and signals from XPS and VASE characterized titanium after PBS immersion,” Opt. Commun. 285, 965–968 (2012).

2011 (2)

N. Penttinen, M. Silvennoinen, S. Hason, and R. Silvennoinen, “Directional sensing of protein adsorption on titanium with a light-induced periodic structure,” J. Phys. Chem. C 115, 12951–12959 (2011).
[CrossRef]

N. Penttinen, S. Hason, L. Joska, L. Cvrcek, and R. Silvennoinen, “On the analysis of optical signals from Ti35Nb6Ta and Ti6Al4V surfaces,” Proc. SPIE 8338, 83380Q (2011).
[CrossRef]

2010 (2)

2008 (2)

2005 (1)

C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, “Mediation of biomaterial-cell interactions by adsorbed proteins: A review,” Tissue Eng. 11, 1–18 (2005).

2002 (1)

D. Kim, H. Blanch, and C. Radke, “Direct imaging of lysozyme adsorption onto mica by atomic force microscopy,” Langmuir 18, 5841–5850 (2002).
[CrossRef]

2001 (1)

D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials 22, 1241–1251 (2001).
[CrossRef]

1998 (2)

M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng. A 243, 231–236 (1998).

T. Ta, M. Sykes, and M. McDermott, “Real-time observation of plasma protein film formation on well-defined surfaces with scanning force microscopy,” Langmuir 14, 2435–2443 (1998).
[CrossRef]

1995 (1)

M. Malmsten, “Ellipsometry studies of fibronectin adsorption,” Coll. Surfaces B 3, 371–381 (1995).

1994 (2)

M. Malmsten, “Ellipsometry studies of protein adsorption at lipid surfaces,” J. Colloid Interf. Sci. 168, 247–254(1994).

D. Cullen and C. Lowe, “AFM studies of protein adsorption. 1. time-resolved protein adsorption to highly oriented pyrolytic-graphite,” J. Colloid Interf. Sci. 166, 102–108 (1994).

1971 (1)

R. Gorman, G. Stoner, and A. Catlin, “The adsorption of fibrinogen. An electron microscope study,” J. Phys. Chem. 75, 2103–2107 (1971).
[CrossRef]

1959 (1)

C. E. Hall and H. S. Slayter, “The fibrinogen molecule: Its size, shape, and mode of polymerization,” J. Biophys. Biochem. Cytol. 5, 11–18 (1959).

Amedee, J.

D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials 22, 1241–1251 (2001).
[CrossRef]

Bartakova, S.

R. Silvennoinen, S. Hason, V. Vetterl, N. Penttinen, M. Silvennoinen, K. Myller, P. Cernochova, S. Bartakova, P. Prachar, and L. Cvrcek, “Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples,” Appl. Opt. 49, 5583–5591 (2010).
[CrossRef]

R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.

N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.

Blanch, H.

D. Kim, H. Blanch, and C. Radke, “Direct imaging of lysozyme adsorption onto mica by atomic force microscopy,” Langmuir 18, 5841–5850 (2002).
[CrossRef]

Brezina, V.

R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.

Catlin, A.

R. Gorman, G. Stoner, and A. Catlin, “The adsorption of fibrinogen. An electron microscope study,” J. Phys. Chem. 75, 2103–2107 (1971).
[CrossRef]

Cernochova, P.

Clegg, R. E.

C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, “Mediation of biomaterial-cell interactions by adsorbed proteins: A review,” Tissue Eng. 11, 1–18 (2005).

Cullen, D.

D. Cullen and C. Lowe, “AFM studies of protein adsorption. 1. time-resolved protein adsorption to highly oriented pyrolytic-graphite,” J. Colloid Interf. Sci. 166, 102–108 (1994).

Cvrcek, L.

N. Penttinen, S. Hason, L. Joska, L. Cvrcek, and R. Silvennoinen, “On the analysis of optical signals from Ti35Nb6Ta and Ti6Al4V surfaces,” Proc. SPIE 8338, 83380Q (2011).
[CrossRef]

R. Silvennoinen, S. Hason, V. Vetterl, N. Penttinen, M. Silvennoinen, K. Myller, P. Cernochova, S. Bartakova, P. Prachar, and L. Cvrcek, “Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples,” Appl. Opt. 49, 5583–5591 (2010).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hason, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrcek, J. Vanek, and P. Prachar, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140 (2008).
[CrossRef]

N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.

Deligianni, D.

D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials 22, 1241–1251 (2001).
[CrossRef]

Gorman, R.

R. Gorman, G. Stoner, and A. Catlin, “The adsorption of fibrinogen. An electron microscope study,” J. Phys. Chem. 75, 2103–2107 (1971).
[CrossRef]

Hall, C. E.

C. E. Hall and H. S. Slayter, “The fibrinogen molecule: Its size, shape, and mode of polymerization,” J. Biophys. Biochem. Cytol. 5, 11–18 (1959).

Hason, S.

N. Penttinen, S. Hason, M. Silvennoinen, L. Joska, and R. Silvennoinen, “Comparison of optical models and signals from XPS and VASE characterized titanium after PBS immersion,” Opt. Commun. 285, 965–968 (2012).

N. Penttinen, S. Hason, L. Joska, L. Cvrcek, and R. Silvennoinen, “On the analysis of optical signals from Ti35Nb6Ta and Ti6Al4V surfaces,” Proc. SPIE 8338, 83380Q (2011).
[CrossRef]

N. Penttinen, M. Silvennoinen, S. Hason, and R. Silvennoinen, “Directional sensing of protein adsorption on titanium with a light-induced periodic structure,” J. Phys. Chem. C 115, 12951–12959 (2011).
[CrossRef]

R. Silvennoinen, S. Hason, V. Vetterl, N. Penttinen, M. Silvennoinen, K. Myller, P. Cernochova, S. Bartakova, P. Prachar, and L. Cvrcek, “Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples,” Appl. Opt. 49, 5583–5591 (2010).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hason, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrcek, J. Vanek, and P. Prachar, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140 (2008).
[CrossRef]

R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.

N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.

Joska, L.

N. Penttinen, S. Hason, M. Silvennoinen, L. Joska, and R. Silvennoinen, “Comparison of optical models and signals from XPS and VASE characterized titanium after PBS immersion,” Opt. Commun. 285, 965–968 (2012).

N. Penttinen, S. Hason, L. Joska, L. Cvrcek, and R. Silvennoinen, “On the analysis of optical signals from Ti35Nb6Ta and Ti6Al4V surfaces,” Proc. SPIE 8338, 83380Q (2011).
[CrossRef]

Katsala, N.

D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials 22, 1241–1251 (2001).
[CrossRef]

Kim, D.

D. Kim, H. Blanch, and C. Radke, “Direct imaging of lysozyme adsorption onto mica by atomic force microscopy,” Langmuir 18, 5841–5850 (2002).
[CrossRef]

Ladas, S.

D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials 22, 1241–1251 (2001).
[CrossRef]

Leavesley, D. I.

C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, “Mediation of biomaterial-cell interactions by adsorbed proteins: A review,” Tissue Eng. 11, 1–18 (2005).

Logothetidis, S.

S. Lousinian and S. Logothetidis, “In-situ and real-time protein adsorption study by spectroscopic ellipsometry,” Thin Solid Films 516, 8002–8008 (2008).
[CrossRef]

Lousinian, S.

S. Lousinian and S. Logothetidis, “In-situ and real-time protein adsorption study by spectroscopic ellipsometry,” Thin Solid Films 516, 8002–8008 (2008).
[CrossRef]

Lowe, C.

D. Cullen and C. Lowe, “AFM studies of protein adsorption. 1. time-resolved protein adsorption to highly oriented pyrolytic-graphite,” J. Colloid Interf. Sci. 166, 102–108 (1994).

Malmsten, M.

M. Malmsten, “Ellipsometry studies of fibronectin adsorption,” Coll. Surfaces B 3, 371–381 (1995).

M. Malmsten, “Ellipsometry studies of protein adsorption at lipid surfaces,” J. Colloid Interf. Sci. 168, 247–254(1994).

McDermott, M.

T. Ta, M. Sykes, and M. McDermott, “Real-time observation of plasma protein film formation on well-defined surfaces with scanning force microscopy,” Langmuir 14, 2435–2443 (1998).
[CrossRef]

Missirlis, Y.

D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials 22, 1241–1251 (2001).
[CrossRef]

Myller, K.

Niinomi, M.

M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng. A 243, 231–236 (1998).

Pearcy, M. J.

C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, “Mediation of biomaterial-cell interactions by adsorbed proteins: A review,” Tissue Eng. 11, 1–18 (2005).

Peiponen, K.-E.

R. Silvennoinen, K.-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

Penttinen, N.

N. Penttinen, S. Hason, M. Silvennoinen, L. Joska, and R. Silvennoinen, “Comparison of optical models and signals from XPS and VASE characterized titanium after PBS immersion,” Opt. Commun. 285, 965–968 (2012).

N. Penttinen, M. Silvennoinen, S. Hason, and R. Silvennoinen, “Directional sensing of protein adsorption on titanium with a light-induced periodic structure,” J. Phys. Chem. C 115, 12951–12959 (2011).
[CrossRef]

N. Penttinen, S. Hason, L. Joska, L. Cvrcek, and R. Silvennoinen, “On the analysis of optical signals from Ti35Nb6Ta and Ti6Al4V surfaces,” Proc. SPIE 8338, 83380Q (2011).
[CrossRef]

R. Silvennoinen, S. Hason, V. Vetterl, N. Penttinen, M. Silvennoinen, K. Myller, P. Cernochova, S. Bartakova, P. Prachar, and L. Cvrcek, “Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples,” Appl. Opt. 49, 5583–5591 (2010).
[CrossRef]

R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.

N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.

Prachar, P.

R. Silvennoinen, S. Hason, V. Vetterl, N. Penttinen, M. Silvennoinen, K. Myller, P. Cernochova, S. Bartakova, P. Prachar, and L. Cvrcek, “Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples,” Appl. Opt. 49, 5583–5591 (2010).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hason, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrcek, J. Vanek, and P. Prachar, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140 (2008).
[CrossRef]

R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.

N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.

Radke, C.

D. Kim, H. Blanch, and C. Radke, “Direct imaging of lysozyme adsorption onto mica by atomic force microscopy,” Langmuir 18, 5841–5850 (2002).
[CrossRef]

Silvennoinen, M.

N. Penttinen, S. Hason, M. Silvennoinen, L. Joska, and R. Silvennoinen, “Comparison of optical models and signals from XPS and VASE characterized titanium after PBS immersion,” Opt. Commun. 285, 965–968 (2012).

N. Penttinen, M. Silvennoinen, S. Hason, and R. Silvennoinen, “Directional sensing of protein adsorption on titanium with a light-induced periodic structure,” J. Phys. Chem. C 115, 12951–12959 (2011).
[CrossRef]

R. Silvennoinen, S. Hason, V. Vetterl, N. Penttinen, M. Silvennoinen, K. Myller, P. Cernochova, S. Bartakova, P. Prachar, and L. Cvrcek, “Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples,” Appl. Opt. 49, 5583–5591 (2010).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hason, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrcek, J. Vanek, and P. Prachar, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140 (2008).
[CrossRef]

R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.

N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.

Silvennoinen, R.

N. Penttinen, S. Hason, M. Silvennoinen, L. Joska, and R. Silvennoinen, “Comparison of optical models and signals from XPS and VASE characterized titanium after PBS immersion,” Opt. Commun. 285, 965–968 (2012).

N. Penttinen, M. Silvennoinen, S. Hason, and R. Silvennoinen, “Directional sensing of protein adsorption on titanium with a light-induced periodic structure,” J. Phys. Chem. C 115, 12951–12959 (2011).
[CrossRef]

N. Penttinen, S. Hason, L. Joska, L. Cvrcek, and R. Silvennoinen, “On the analysis of optical signals from Ti35Nb6Ta and Ti6Al4V surfaces,” Proc. SPIE 8338, 83380Q (2011).
[CrossRef]

R. Silvennoinen, S. Hason, V. Vetterl, N. Penttinen, M. Silvennoinen, K. Myller, P. Cernochova, S. Bartakova, P. Prachar, and L. Cvrcek, “Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples,” Appl. Opt. 49, 5583–5591 (2010).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hason, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrcek, J. Vanek, and P. Prachar, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140 (2008).
[CrossRef]

R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.

N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.

R. Silvennoinen, K.-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

Slayter, H. S.

C. E. Hall and H. S. Slayter, “The fibrinogen molecule: Its size, shape, and mode of polymerization,” J. Biophys. Biochem. Cytol. 5, 11–18 (1959).

Sotiropoulou, D.

D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials 22, 1241–1251 (2001).
[CrossRef]

Stoner, G.

R. Gorman, G. Stoner, and A. Catlin, “The adsorption of fibrinogen. An electron microscope study,” J. Phys. Chem. 75, 2103–2107 (1971).
[CrossRef]

Subramanian, A.

S. G. Thakurta and A. Subramanian, “Evaluation of in situ albumin binding surfaces: a study of protein adsorption and platelet adhesion,” J. Mater. Sci. 22, 1–13 (2010).

Sykes, M.

T. Ta, M. Sykes, and M. McDermott, “Real-time observation of plasma protein film formation on well-defined surfaces with scanning force microscopy,” Langmuir 14, 2435–2443 (1998).
[CrossRef]

Ta, T.

T. Ta, M. Sykes, and M. McDermott, “Real-time observation of plasma protein film formation on well-defined surfaces with scanning force microscopy,” Langmuir 14, 2435–2443 (1998).
[CrossRef]

Thakurta, S. G.

S. G. Thakurta and A. Subramanian, “Evaluation of in situ albumin binding surfaces: a study of protein adsorption and platelet adhesion,” J. Mater. Sci. 22, 1–13 (2010).

Tuononen, H.

Vanek, J.

R. Silvennoinen, V. Vetterl, S. Hason, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrcek, J. Vanek, and P. Prachar, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140 (2008).
[CrossRef]

R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.

N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.

Vetterl, V.

R. Silvennoinen, S. Hason, V. Vetterl, N. Penttinen, M. Silvennoinen, K. Myller, P. Cernochova, S. Bartakova, P. Prachar, and L. Cvrcek, “Diffractive-optics-based sensor as a tool for detection of biocompatibility of titanium and titanium-doped hydrocarbon samples,” Appl. Opt. 49, 5583–5591 (2010).
[CrossRef]

R. Silvennoinen, V. Vetterl, S. Hason, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrcek, J. Vanek, and P. Prachar, “Sensing of human plasma fibrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130–10140 (2008).
[CrossRef]

R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.

N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.

Wilson, C. J.

C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, “Mediation of biomaterial-cell interactions by adsorbed proteins: A review,” Tissue Eng. 11, 1–18 (2005).

Appl. Opt. (1)

Biomaterials (1)

D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials 22, 1241–1251 (2001).
[CrossRef]

Coll. Surfaces B (1)

M. Malmsten, “Ellipsometry studies of fibronectin adsorption,” Coll. Surfaces B 3, 371–381 (1995).

J. Biophys. Biochem. Cytol. (1)

C. E. Hall and H. S. Slayter, “The fibrinogen molecule: Its size, shape, and mode of polymerization,” J. Biophys. Biochem. Cytol. 5, 11–18 (1959).

J. Colloid Interf. Sci. (2)

D. Cullen and C. Lowe, “AFM studies of protein adsorption. 1. time-resolved protein adsorption to highly oriented pyrolytic-graphite,” J. Colloid Interf. Sci. 166, 102–108 (1994).

M. Malmsten, “Ellipsometry studies of protein adsorption at lipid surfaces,” J. Colloid Interf. Sci. 168, 247–254(1994).

J. Mater. Sci. (1)

S. G. Thakurta and A. Subramanian, “Evaluation of in situ albumin binding surfaces: a study of protein adsorption and platelet adhesion,” J. Mater. Sci. 22, 1–13 (2010).

J. Phys. Chem. (1)

R. Gorman, G. Stoner, and A. Catlin, “The adsorption of fibrinogen. An electron microscope study,” J. Phys. Chem. 75, 2103–2107 (1971).
[CrossRef]

J. Phys. Chem. C (1)

N. Penttinen, M. Silvennoinen, S. Hason, and R. Silvennoinen, “Directional sensing of protein adsorption on titanium with a light-induced periodic structure,” J. Phys. Chem. C 115, 12951–12959 (2011).
[CrossRef]

Langmuir (2)

D. Kim, H. Blanch, and C. Radke, “Direct imaging of lysozyme adsorption onto mica by atomic force microscopy,” Langmuir 18, 5841–5850 (2002).
[CrossRef]

T. Ta, M. Sykes, and M. McDermott, “Real-time observation of plasma protein film formation on well-defined surfaces with scanning force microscopy,” Langmuir 14, 2435–2443 (1998).
[CrossRef]

Mater. Sci. Eng. A (1)

M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng. A 243, 231–236 (1998).

Opt. Commun. (1)

N. Penttinen, S. Hason, M. Silvennoinen, L. Joska, and R. Silvennoinen, “Comparison of optical models and signals from XPS and VASE characterized titanium after PBS immersion,” Opt. Commun. 285, 965–968 (2012).

Opt. Express (1)

Proc. SPIE (1)

N. Penttinen, S. Hason, L. Joska, L. Cvrcek, and R. Silvennoinen, “On the analysis of optical signals from Ti35Nb6Ta and Ti6Al4V surfaces,” Proc. SPIE 8338, 83380Q (2011).
[CrossRef]

Thin Solid Films (1)

S. Lousinian and S. Logothetidis, “In-situ and real-time protein adsorption study by spectroscopic ellipsometry,” Thin Solid Films 516, 8002–8008 (2008).
[CrossRef]

Tissue Eng. (1)

C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, “Mediation of biomaterial-cell interactions by adsorbed proteins: A review,” Tissue Eng. 11, 1–18 (2005).

Other (3)

N. Penttinen, S. Hason, M. Silvennoinen, S. Bartakova, P. Prachar, J. Vanek, L. Cvrcek, V. Vetterl, and R. Silvennoinen, “Coherence and magnitude of optical signals from TiAlV and TiNbTa surfaces: Study on adsorption properties,” presented at the 10th International Conference, Correlation Optics, Chernivtsi, Ukraine, 12–16Sept.2011.

R. Silvennoinen, K.-E. Peiponen, and K. Myller, Specular Gloss (Elsevier, 2008).

R. Silvennoinen, N. Penttinen, M. Silvennoinen, S. Hason, V. Vetterl, S. Bartakova, P. Prachar, J. Vanek, and V. Brezina, Optical Detection of Protein Adsorption on Doped Titanium Surface (InTech, 2011), pp. 173–190.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Dark field microscope images of (a) Ti, (b) Ti6Al4V, and (c) Ti35Nb6Ta surface. White vertical bar denotes the length of 500μm.

Fig. 2.
Fig. 2.

Schematic image of the used DOES setup, with lenses L1 and L2, beam splitters BS, sample cuvette, DOEs, CCD cameras and the PC. An example of a 4×4 spot image shown in the schematic PC screen. Ns denotes the respective complex refractive indexes. Cuvette also contains a stirrer.

Fig. 3.
Fig. 3.

Relative changes of (a) gloss and (b) Ropt for sample to sample comparison: (I) Ti, (II) Ti6Al4V, and (III) Ti35Nb6Ta. In (b) the Ti6Al4V signal is multiplied with a factor of 100. Vertical dashed lines indicate the addition of the proteins and 10 minutes after addition accordingly.

Fig. 4.
Fig. 4.

Initial (zero) and after stabilization (bar) relative signal levels of (a) gloss and (b) Ropt in percents from (I) Ti, (II) Ti6Al4V, and (III) Ti35Nb6Ta surfaces. The vertical segments denote the standard deviations.

Tables (1)

Tables Icon

Table 1. Mechanical Parameters as Average Roughness Ra, Peak to Valley Roughness Rz, Root Mean Square Roughness Rq, Surface Profile Correlation Length lc, Surface Profile Length ls, Relative Surface Profile Length Change ls,rel, Modulus of Elasticity E, Tensile Strength Rm, and Elongation σ for the Samples

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ra=1lL0lL|z(x)z(x)|dx,
Rq=[1lL0lL(z(x)z(x))2dx]1/2.
AC(τ)=1lL0lLz(x)z(x+τ)dx.
ls(ϕ)=0lL(z(x)z(x+ϕ))2+(x(x+ϕ))2dx,
ls,rel=lslLlL100%.
G=100INCsINCr.
Ropt=λ4πln(1Rs1RrICsICr).

Metrics