Abstract

Acousto-optic diffraction of light in optically active cubic crystals is analyzed from the viewpoint of conservation of optical angular momentum. It is shown that the availability of angular momentum in the diffracted optical beam can be necessarily inferred from the requirements of angular momentum conservation law. As follows from our analysis, a circularly polarized diffracted wave should bear an orbital angular momentum. The efficiency of the spin-to-orbit momentum conversion is governed by the efficiency of acousto-optic diffraction.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
    [CrossRef]
  2. D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995).
    [CrossRef]
  3. S. Ya. Kilin, “Quantum information,” Phys. Uspekhi 42, 435–452 (1999).
    [CrossRef]
  4. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
    [CrossRef]
  5. O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Biaxial crystal-based optical tweezers,” Ukr. J. Phys. Opt. 11, 99–106 (2010).
    [CrossRef]
  6. B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010).
    [CrossRef]
  7. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [CrossRef]
  8. L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Crys. Liq. Crys. 488, 148–162 (2008).
    [CrossRef]
  9. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1, 783–795 (2011).
    [CrossRef]
  10. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
    [CrossRef]
  11. A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Generation of single-charge optical vortices with an uniaxial crystal,” Opt. Express 14, 3724–3729 (2006).
    [CrossRef]
  12. I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex,” J. Opt. Soc. Am. A 28, 633–640 (2011).
    [CrossRef]
  13. Yu. Vasylkiv, I. Skab, and R. Vlokh, “Measurements of piezooptic coefficients π14 and π52 in Pb5Ge3O11 crystals using torsion induced optical vortex,” Ukr. J. Phys. Opt. 12, 101–108 (2011).
    [CrossRef]
  14. I. Skab, Y. Vasylkiv, B. Zapeka, V. Savaryn, and R. Vlokh, “On the appearance of singularities of optical field under torsion of crystals containing three-fold symmetry axes,” J. Opt. Soc. Am. A 28, 1331–1340 (2011).
    [CrossRef]
  15. I. Skab, Yu. Vasylkiv, and R. Vlokh, “On the possibility of electrooptic operation by orbital angular momentum of light beams via Pockels effect in crystals,” Ukr. J. Phys. Opt. 12, 127–136 (2011).
    [CrossRef]
  16. Yu. Vasylkiv, O. Krupych, I. Skab, and R. Vlokh, “On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals,” Ukr. J. Phys. Opt. 12, 171–179 (2011).
    [CrossRef]
  17. I. Skab, Y. Vasylkiv, I. Smaga, and R. Vlokh, “Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals,” Phys. Rev. A 84, 043815 (2011).
    [CrossRef]
  18. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
    [CrossRef]
  19. V. Shvedov, A. Desyatnikov, A. Rode, W. Krolikowski, and Y. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17, 5743–5757 (2009).
    [CrossRef]
  20. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
    [CrossRef]
  21. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Transfer of orbital angular momentum between acoustic and optical vortices in optical fiber,” in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFF5.
  22. R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Collinear acoustogyration interaction of light and ultrasonic,” Rep. Ukrain. Acad. Sci. 7, 39–41 (1991).
  23. R. O. Vlokh, Yu. A. Pyatak, and I. P. Skab, “Acoustogyration diffraction of light in quartz crystals,” Izv. AN SSSR, Ser. Fiz. 53, 1339–1341 (1989).
  24. R. Vlokh, O. Krupych, and I. Martynyuk-Lototska, “On the acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 8, 143–157 (2007).
    [CrossRef]
  25. I. Martynyuk-Lototska, O. Mys, S. Akimov, O. Krupych, and R. Vlokh, “Acoustogyration diffraction of optical waves: case of SiO2 and TeO2 crystals,” Opto-electron. Rev. 18, 137–149 (2010).
    [CrossRef]
  26. K. Aizu, “Ferroelectric transformations of tensorial properties in regular ferroelectrics,” Phys. Rev. 133, A1350–A1359 (1964).
    [CrossRef]
  27. O. G. Vlokh, Spatial Dispersion Phenomena in Parametric Crystal Optics (Vyshcha Shkola, 1984).
  28. I. Skab and R. Vlokh, “On the conservation of optical angular momentum at acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 13, 1–3 (2012).
    [CrossRef]
  29. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
    [CrossRef]
  30. A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848–10863 (2010).
    [CrossRef]
  31. M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).
  32. Almaz Optics, Inc., “Sillenite crystals, BGO/BSO/BTO,” http://www.almazoptics.com/BGO-BSO-BTO.html .

2012 (1)

I. Skab and R. Vlokh, “On the conservation of optical angular momentum at acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 13, 1–3 (2012).
[CrossRef]

2011 (8)

I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex,” J. Opt. Soc. Am. A 28, 633–640 (2011).
[CrossRef]

I. Skab, Y. Vasylkiv, B. Zapeka, V. Savaryn, and R. Vlokh, “On the appearance of singularities of optical field under torsion of crystals containing three-fold symmetry axes,” J. Opt. Soc. Am. A 28, 1331–1340 (2011).
[CrossRef]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1, 783–795 (2011).
[CrossRef]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Yu. Vasylkiv, I. Skab, and R. Vlokh, “Measurements of piezooptic coefficients π14 and π52 in Pb5Ge3O11 crystals using torsion induced optical vortex,” Ukr. J. Phys. Opt. 12, 101–108 (2011).
[CrossRef]

I. Skab, Yu. Vasylkiv, and R. Vlokh, “On the possibility of electrooptic operation by orbital angular momentum of light beams via Pockels effect in crystals,” Ukr. J. Phys. Opt. 12, 127–136 (2011).
[CrossRef]

Yu. Vasylkiv, O. Krupych, I. Skab, and R. Vlokh, “On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals,” Ukr. J. Phys. Opt. 12, 171–179 (2011).
[CrossRef]

I. Skab, Y. Vasylkiv, I. Smaga, and R. Vlokh, “Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals,” Phys. Rev. A 84, 043815 (2011).
[CrossRef]

2010 (4)

O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Biaxial crystal-based optical tweezers,” Ukr. J. Phys. Opt. 11, 99–106 (2010).
[CrossRef]

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010).
[CrossRef]

I. Martynyuk-Lototska, O. Mys, S. Akimov, O. Krupych, and R. Vlokh, “Acoustogyration diffraction of optical waves: case of SiO2 and TeO2 crystals,” Opto-electron. Rev. 18, 137–149 (2010).
[CrossRef]

A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848–10863 (2010).
[CrossRef]

2009 (1)

2008 (1)

L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Crys. Liq. Crys. 488, 148–162 (2008).
[CrossRef]

2007 (1)

R. Vlokh, O. Krupych, and I. Martynyuk-Lototska, “On the acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 8, 143–157 (2007).
[CrossRef]

2006 (3)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Generation of single-charge optical vortices with an uniaxial crystal,” Opt. Express 14, 3724–3729 (2006).
[CrossRef]

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
[CrossRef]

2001 (1)

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

1999 (1)

S. Ya. Kilin, “Quantum information,” Phys. Uspekhi 42, 435–452 (1999).
[CrossRef]

1998 (1)

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

1995 (1)

D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995).
[CrossRef]

1991 (1)

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Collinear acoustogyration interaction of light and ultrasonic,” Rep. Ukrain. Acad. Sci. 7, 39–41 (1991).

1989 (1)

R. O. Vlokh, Yu. A. Pyatak, and I. P. Skab, “Acoustogyration diffraction of light in quartz crystals,” Izv. AN SSSR, Ser. Fiz. 53, 1339–1341 (1989).

1964 (1)

K. Aizu, “Ferroelectric transformations of tensorial properties in regular ferroelectrics,” Phys. Rev. 133, A1350–A1359 (1964).
[CrossRef]

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[CrossRef]

Aizu, K.

K. Aizu, “Ferroelectric transformations of tensorial properties in regular ferroelectrics,” Phys. Rev. 133, A1350–A1359 (1964).
[CrossRef]

Akimov, S.

I. Martynyuk-Lototska, O. Mys, S. Akimov, O. Krupych, and R. Vlokh, “Acoustogyration diffraction of optical waves: case of SiO2 and TeO2 crystals,” Opto-electron. Rev. 18, 137–149 (2010).
[CrossRef]

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Transfer of orbital angular momentum between acoustic and optical vortices in optical fiber,” in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFF5.

Angelsky, O. V.

O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Biaxial crystal-based optical tweezers,” Ukr. J. Phys. Opt. 11, 99–106 (2010).
[CrossRef]

Beresna, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1, 783–795 (2011).
[CrossRef]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
[CrossRef]

Boschi, D.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Branca, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Brasselet, E.

D’Ambrosio, V.

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010).
[CrossRef]

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Transfer of orbital angular momentum between acoustic and optical vortices in optical fiber,” in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFF5.

De Martini, F.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Desyatnikov, A.

Desyatnikov, A. S.

DiVincenzo, D. P.

D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995).
[CrossRef]

Fadeyeva, T.

Fadeyeva, T. A.

Gecevicius, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1, 783–795 (2011).
[CrossRef]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Hanson, S. G.

O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Biaxial crystal-based optical tweezers,” Ukr. J. Phys. Opt. 11, 99–106 (2010).
[CrossRef]

Hardy, L.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Izdebskaya, Y. V.

Kazansky, P. G.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1, 783–795 (2011).
[CrossRef]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Kilin, S. Ya.

S. Ya. Kilin, “Quantum information,” Phys. Uspekhi 42, 435–452 (1999).
[CrossRef]

Kivshar, Y.

Kivshar, Y. S.

Krolikowski, W.

Krupych, O.

Yu. Vasylkiv, O. Krupych, I. Skab, and R. Vlokh, “On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals,” Ukr. J. Phys. Opt. 12, 171–179 (2011).
[CrossRef]

I. Martynyuk-Lototska, O. Mys, S. Akimov, O. Krupych, and R. Vlokh, “Acoustogyration diffraction of optical waves: case of SiO2 and TeO2 crystals,” Opto-electron. Rev. 18, 137–149 (2010).
[CrossRef]

R. Vlokh, O. Krupych, and I. Martynyuk-Lototska, “On the acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 8, 143–157 (2007).
[CrossRef]

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Transfer of orbital angular momentum between acoustic and optical vortices in optical fiber,” in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFF5.

Maksimyak, A. P.

O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Biaxial crystal-based optical tweezers,” Ukr. J. Phys. Opt. 11, 99–106 (2010).
[CrossRef]

Maksimyak, P. P.

O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Biaxial crystal-based optical tweezers,” Ukr. J. Phys. Opt. 11, 99–106 (2010).
[CrossRef]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Marrucci, L.

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010).
[CrossRef]

L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Crys. Liq. Crys. 488, 148–162 (2008).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Martynyuk-Lototska, I.

I. Martynyuk-Lototska, O. Mys, S. Akimov, O. Krupych, and R. Vlokh, “Acoustogyration diffraction of optical waves: case of SiO2 and TeO2 crystals,” Opto-electron. Rev. 18, 137–149 (2010).
[CrossRef]

R. Vlokh, O. Krupych, and I. Martynyuk-Lototska, “On the acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 8, 143–157 (2007).
[CrossRef]

Mys, O.

I. Martynyuk-Lototska, O. Mys, S. Akimov, O. Krupych, and R. Vlokh, “Acoustogyration diffraction of optical waves: case of SiO2 and TeO2 crystals,” Opto-electron. Rev. 18, 137–149 (2010).
[CrossRef]

Neshev, D. N.

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
[CrossRef]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Piccirillo, B.

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010).
[CrossRef]

Popescu, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Pyatak, Y. A.

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Collinear acoustogyration interaction of light and ultrasonic,” Rep. Ukrain. Acad. Sci. 7, 39–41 (1991).

Pyatak, Yu. A.

R. O. Vlokh, Yu. A. Pyatak, and I. P. Skab, “Acoustogyration diffraction of light in quartz crystals,” Izv. AN SSSR, Ser. Fiz. 53, 1339–1341 (1989).

Rode, A.

Santamato, E.

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010).
[CrossRef]

Savaryn, V.

Shaskolskaya, M. P.

M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).

Shvedov, V.

Shvedov, V. G.

Skab, I.

I. Skab and R. Vlokh, “On the conservation of optical angular momentum at acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 13, 1–3 (2012).
[CrossRef]

I. Skab, Y. Vasylkiv, I. Smaga, and R. Vlokh, “Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals,” Phys. Rev. A 84, 043815 (2011).
[CrossRef]

Yu. Vasylkiv, I. Skab, and R. Vlokh, “Measurements of piezooptic coefficients π14 and π52 in Pb5Ge3O11 crystals using torsion induced optical vortex,” Ukr. J. Phys. Opt. 12, 101–108 (2011).
[CrossRef]

I. Skab, Y. Vasylkiv, B. Zapeka, V. Savaryn, and R. Vlokh, “On the appearance of singularities of optical field under torsion of crystals containing three-fold symmetry axes,” J. Opt. Soc. Am. A 28, 1331–1340 (2011).
[CrossRef]

I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex,” J. Opt. Soc. Am. A 28, 633–640 (2011).
[CrossRef]

I. Skab, Yu. Vasylkiv, and R. Vlokh, “On the possibility of electrooptic operation by orbital angular momentum of light beams via Pockels effect in crystals,” Ukr. J. Phys. Opt. 12, 127–136 (2011).
[CrossRef]

Yu. Vasylkiv, O. Krupych, I. Skab, and R. Vlokh, “On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals,” Ukr. J. Phys. Opt. 12, 171–179 (2011).
[CrossRef]

Skab, I. P.

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Collinear acoustogyration interaction of light and ultrasonic,” Rep. Ukrain. Acad. Sci. 7, 39–41 (1991).

R. O. Vlokh, Yu. A. Pyatak, and I. P. Skab, “Acoustogyration diffraction of light in quartz crystals,” Izv. AN SSSR, Ser. Fiz. 53, 1339–1341 (1989).

Slussarenko, S.

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010).
[CrossRef]

Smaga, I.

I. Skab, Y. Vasylkiv, I. Smaga, and R. Vlokh, “Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals,” Phys. Rev. A 84, 043815 (2011).
[CrossRef]

Soskin, M. S.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

Vasnetsov, M. V.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

Vasylkiv, Y.

Vasylkiv, Yu.

Yu. Vasylkiv, I. Skab, and R. Vlokh, “Measurements of piezooptic coefficients π14 and π52 in Pb5Ge3O11 crystals using torsion induced optical vortex,” Ukr. J. Phys. Opt. 12, 101–108 (2011).
[CrossRef]

I. Skab, Yu. Vasylkiv, and R. Vlokh, “On the possibility of electrooptic operation by orbital angular momentum of light beams via Pockels effect in crystals,” Ukr. J. Phys. Opt. 12, 127–136 (2011).
[CrossRef]

Yu. Vasylkiv, O. Krupych, I. Skab, and R. Vlokh, “On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals,” Ukr. J. Phys. Opt. 12, 171–179 (2011).
[CrossRef]

Vlokh, O. G.

O. G. Vlokh, Spatial Dispersion Phenomena in Parametric Crystal Optics (Vyshcha Shkola, 1984).

Vlokh, R.

I. Skab and R. Vlokh, “On the conservation of optical angular momentum at acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 13, 1–3 (2012).
[CrossRef]

I. Skab, Y. Vasylkiv, I. Smaga, and R. Vlokh, “Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals,” Phys. Rev. A 84, 043815 (2011).
[CrossRef]

I. Skab, Y. Vasylkiv, B. Zapeka, V. Savaryn, and R. Vlokh, “On the appearance of singularities of optical field under torsion of crystals containing three-fold symmetry axes,” J. Opt. Soc. Am. A 28, 1331–1340 (2011).
[CrossRef]

Yu. Vasylkiv, I. Skab, and R. Vlokh, “Measurements of piezooptic coefficients π14 and π52 in Pb5Ge3O11 crystals using torsion induced optical vortex,” Ukr. J. Phys. Opt. 12, 101–108 (2011).
[CrossRef]

Yu. Vasylkiv, O. Krupych, I. Skab, and R. Vlokh, “On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals,” Ukr. J. Phys. Opt. 12, 171–179 (2011).
[CrossRef]

I. Skab, Yu. Vasylkiv, and R. Vlokh, “On the possibility of electrooptic operation by orbital angular momentum of light beams via Pockels effect in crystals,” Ukr. J. Phys. Opt. 12, 127–136 (2011).
[CrossRef]

I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex,” J. Opt. Soc. Am. A 28, 633–640 (2011).
[CrossRef]

I. Martynyuk-Lototska, O. Mys, S. Akimov, O. Krupych, and R. Vlokh, “Acoustogyration diffraction of optical waves: case of SiO2 and TeO2 crystals,” Opto-electron. Rev. 18, 137–149 (2010).
[CrossRef]

R. Vlokh, O. Krupych, and I. Martynyuk-Lototska, “On the acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 8, 143–157 (2007).
[CrossRef]

Vlokh, R. O.

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Collinear acoustogyration interaction of light and ultrasonic,” Rep. Ukrain. Acad. Sci. 7, 39–41 (1991).

R. O. Vlokh, Yu. A. Pyatak, and I. P. Skab, “Acoustogyration diffraction of light in quartz crystals,” Izv. AN SSSR, Ser. Fiz. 53, 1339–1341 (1989).

Volyar, A.

Volyar, A. V.

Zapeka, B.

Appl. Phys. Lett. (2)

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010).
[CrossRef]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[CrossRef]

Izv. AN SSSR, Ser. Fiz. (1)

R. O. Vlokh, Yu. A. Pyatak, and I. P. Skab, “Acoustogyration diffraction of light in quartz crystals,” Izv. AN SSSR, Ser. Fiz. 53, 1339–1341 (1989).

J. Opt. Soc. Am. A (2)

Mol. Crys. Liq. Crys. (1)

L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Crys. Liq. Crys. 488, 148–162 (2008).
[CrossRef]

Opt. Express (3)

Opt. Mater. Express (1)

Opto-electron. Rev. (1)

I. Martynyuk-Lototska, O. Mys, S. Akimov, O. Krupych, and R. Vlokh, “Acoustogyration diffraction of optical waves: case of SiO2 and TeO2 crystals,” Opto-electron. Rev. 18, 137–149 (2010).
[CrossRef]

Phys. Rev. (2)

K. Aizu, “Ferroelectric transformations of tensorial properties in regular ferroelectrics,” Phys. Rev. 133, A1350–A1359 (1964).
[CrossRef]

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[CrossRef]

Phys. Rev. A (1)

I. Skab, Y. Vasylkiv, I. Smaga, and R. Vlokh, “Spin-to-orbital momentum conversion via electrooptic Pockels effect in crystals,” Phys. Rev. A 84, 043815 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[CrossRef]

Phys. Uspekhi (1)

S. Ya. Kilin, “Quantum information,” Phys. Uspekhi 42, 435–452 (1999).
[CrossRef]

Prog. Opt. (1)

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

Rep. Ukrain. Acad. Sci. (1)

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Collinear acoustogyration interaction of light and ultrasonic,” Rep. Ukrain. Acad. Sci. 7, 39–41 (1991).

Rev. Sci. Instr. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
[CrossRef]

Science (1)

D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995).
[CrossRef]

Ukr. J. Phys. Opt. (6)

O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Biaxial crystal-based optical tweezers,” Ukr. J. Phys. Opt. 11, 99–106 (2010).
[CrossRef]

Yu. Vasylkiv, I. Skab, and R. Vlokh, “Measurements of piezooptic coefficients π14 and π52 in Pb5Ge3O11 crystals using torsion induced optical vortex,” Ukr. J. Phys. Opt. 12, 101–108 (2011).
[CrossRef]

I. Skab, Yu. Vasylkiv, and R. Vlokh, “On the possibility of electrooptic operation by orbital angular momentum of light beams via Pockels effect in crystals,” Ukr. J. Phys. Opt. 12, 127–136 (2011).
[CrossRef]

Yu. Vasylkiv, O. Krupych, I. Skab, and R. Vlokh, “On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals,” Ukr. J. Phys. Opt. 12, 171–179 (2011).
[CrossRef]

I. Skab and R. Vlokh, “On the conservation of optical angular momentum at acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 13, 1–3 (2012).
[CrossRef]

R. Vlokh, O. Krupych, and I. Martynyuk-Lototska, “On the acoustogyration diffraction of light,” Ukr. J. Phys. Opt. 8, 143–157 (2007).
[CrossRef]

Other (4)

O. G. Vlokh, Spatial Dispersion Phenomena in Parametric Crystal Optics (Vyshcha Shkola, 1984).

M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).

Almaz Optics, Inc., “Sillenite crystals, BGO/BSO/BTO,” http://www.almazoptics.com/BGO-BSO-BTO.html .

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Transfer of orbital angular momentum between acoustic and optical vortices in optical fiber,” in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFF5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Schematic presentation of the acousto-optic interaction.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η=sin2[π2λ2δ33332PaLρv333n2H],
ΔE1ω±Ω=p1221S21ΩD2ω,ΔE2ω±Ω=p2121S21ΩD1ω.
Sin=,Sd+Ld=+2=.
η=sin2[π2λ02M2PaLH]π22λ02M2PaLH,
θd=arcsinf0λ02nlv21(12v212λ02f02n¯ΔnC),

Metrics