Abstract

A method of polarization mapping of the optical-anisotropic polycrystalline networks of the blood plasma albumin and globulin proteins with adjusted spatial-frequency filtering of the coordinate distributions of the azimuth and ellipticity of the polarization of laser radiation in the Fourier plane is proposed and substantiated. A set of criteria of diagnosing prostate cancer based on the statistical correlation and fractal analysis of the spatial-frequency filtered polarization distributions generated by dendritic networks of albumin and globulin spherulitic networks has been detected and substantiated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Tuchin, ed., Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science (Kluwer Academic, 2004).
  2. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  3. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2002).
  4. O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
    [CrossRef]
  5. A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
    [CrossRef]
  6. O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D 39, 3547–3558 (2006).
    [CrossRef]
  7. O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
    [CrossRef]
  8. V. P. Pishak, A. G. Ushenko, P. Gryhoryshyn, S. B. Yermolenko, V. M. Rudeychuk, and O. V. Pishak, “Polarization structure of biospeckle fields in crosslinked tissues of a human organism: Vector I. structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
    [CrossRef]
  9. A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
    [CrossRef]
  10. S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
    [CrossRef]
  11. A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
    [CrossRef]
  12. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
    [CrossRef]
  13. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
    [CrossRef]
  14. J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.
  15. M. J. Everett, K. Shoenenberger, B. W. Colston, and L. B. da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
    [CrossRef]
  16. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302(1999).
    [CrossRef]
  17. S. H. Guminetskiy, O. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method for investigation of the peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
    [CrossRef]
  18. S. C. Cowin, “How is a tissue built?” J. Biomech. Eng. 122, 553–568 (2000).
    [CrossRef]
  19. A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
    [CrossRef]
  20. A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
    [CrossRef]
  21. O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
    [CrossRef]
  22. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).
  23. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.
  24. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  25. R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).
  26. O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).
  27. A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
    [CrossRef]
  28. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
    [CrossRef]

2010 (1)

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
[CrossRef]

2009 (1)

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

2008 (2)

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

S. H. Guminetskiy, O. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method for investigation of the peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

2006 (1)

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D 39, 3547–3558 (2006).
[CrossRef]

2005 (3)

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

2002 (2)

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
[CrossRef]

2001 (2)

A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
[CrossRef]

A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
[CrossRef]

2000 (5)

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

S. C. Cowin, “How is a tissue built?” J. Biomech. Eng. 122, 553–568 (2000).
[CrossRef]

A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

1999 (1)

1998 (2)

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

M. J. Everett, K. Shoenenberger, B. W. Colston, and L. B. da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
[CrossRef]

1997 (1)

V. P. Pishak, A. G. Ushenko, P. Gryhoryshyn, S. B. Yermolenko, V. M. Rudeychuk, and O. V. Pishak, “Polarization structure of biospeckle fields in crosslinked tissues of a human organism: Vector I. structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

1990 (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Angel’skii, O. V.

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

Angelsky, O. V.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D 39, 3547–3558 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

Arkhelyuk, A. D.

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

Arkhelyuk, O. D.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Bachyns’ka, I.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Burch, J. M.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

Burkovets, D. N.

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Colston, B. W.

Cowin, S. C.

S. C. Cowin, “How is a tissue built?” J. Biomech. Eng. 122, 553–568 (2000).
[CrossRef]

da Silva, L. B.

de Boer, J. F.

J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302(1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Ducros, M. G.

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Ermolenko, S. B.

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

Everett, M. J.

Gavrila, C.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Gerrard, A.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

Goudail, F.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Gruia, I.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Gryhoryshyn, P.

V. P. Pishak, A. G. Ushenko, P. Gryhoryshyn, S. B. Yermolenko, V. M. Rudeychuk, and O. V. Pishak, “Polarization structure of biospeckle fields in crosslinked tissues of a human organism: Vector I. structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Grynchuk, F. V.

S. H. Guminetskiy, O. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method for investigation of the peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Guminetskiy, S. H.

S. H. Guminetskiy, O. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method for investigation of the peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Guminetsky, S.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Istratiy, V.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
[CrossRef]

Ivashko, P.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Jozwicki, R.

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2002).

Mikhailova, A.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Milner, T. E.

J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302(1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Misevich, I. Z.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2002).

Moiysuk, T. G.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
[CrossRef]

Motrych, A. V.

S. H. Guminetskiy, O. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method for investigation of the peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Nelson, J. S.

J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302(1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Numan, O. K.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
[CrossRef]

Patorski, K.

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

Peresunko, A. P.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
[CrossRef]

Pishak, O. V.

V. P. Pishak, A. G. Ushenko, P. Gryhoryshyn, S. B. Yermolenko, V. M. Rudeychuk, and O. V. Pishak, “Polarization structure of biospeckle fields in crosslinked tissues of a human organism: Vector I. structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Pishak, V. P.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

V. P. Pishak, A. G. Ushenko, P. Gryhoryshyn, S. B. Yermolenko, V. M. Rudeychuk, and O. V. Pishak, “Polarization structure of biospeckle fields in crosslinked tissues of a human organism: Vector I. structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Polyanskiy, I. P.

S. H. Guminetskiy, O. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method for investigation of the peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Prahl, S. A.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Prydij, A.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Rudeychuk, V. M.

V. P. Pishak, A. G. Ushenko, P. Gryhoryshyn, S. B. Yermolenko, V. M. Rudeychuk, and O. V. Pishak, “Polarization structure of biospeckle fields in crosslinked tissues of a human organism: Vector I. structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Shoenenberger, K.

Srinivas, S. M.

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Toma, O.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Tomka, Yu. Ya.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2002).

Ushenko, A.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Ushenko, A. G.

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D 39, 3547–3558 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
[CrossRef]

A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
[CrossRef]

A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

V. P. Pishak, A. G. Ushenko, P. Gryhoryshyn, S. B. Yermolenko, V. M. Rudeychuk, and O. V. Pishak, “Polarization structure of biospeckle fields in crosslinked tissues of a human organism: Vector I. structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Ushenko, O. G.

S. H. Guminetskiy, O. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method for investigation of the peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Ushenko, Y. A.

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

Ushenko, Ye. G.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D 39, 3547–3558 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

Ushenko, Yu. A.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D 39, 3547–3558 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

van Gemert, M. J.

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

Vladychenko, K.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Welch, A. J.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Yermolenko, S.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Yermolenko, S. B.

V. P. Pishak, A. G. Ushenko, P. Gryhoryshyn, S. B. Yermolenko, V. M. Rudeychuk, and O. V. Pishak, “Polarization structure of biospeckle fields in crosslinked tissues of a human organism: Vector I. structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Zimnyakov, D.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Adv. Opt. Technol. (1)

A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Biomech. Eng. (1)

S. C. Cowin, “How is a tissue built?” J. Biomech. Eng. 122, 553–568 (2000).
[CrossRef]

J. Biomed. Opt. (2)

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

J. Phys. D (2)

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D 39, 3547–3558 (2006).
[CrossRef]

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Laser Phys. (1)

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Opt. Appl. (1)

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).

Opt. Lett. (2)

Opt. Spectrosc. (6)

A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
[CrossRef]

A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

Proc. SPIE (5)

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998).
[CrossRef]

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

S. H. Guminetskiy, O. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method for investigation of the peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

V. P. Pishak, A. G. Ushenko, P. Gryhoryshyn, S. B. Yermolenko, V. M. Rudeychuk, and O. V. Pishak, “Polarization structure of biospeckle fields in crosslinked tissues of a human organism: Vector I. structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Other (6)

V. Tuchin, ed., Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science (Kluwer Academic, 2004).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2002).

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical scheme of polarization Fourier polarimeter. 1, He-Ne laser; 2, collimator; 3, stationary quarter-wave plate; 5, 9, mechanically mobile quarter-wave plates; 4, 10, polarizer and analyzer, respectively; 6, object of study; 7, 8, polarization micro-objectives; 11, CCD camera; 12, personal computer. F(x1,y1), object plane; F(x2,y2) , image plane; F(u,v), Fourier plane with the diaphragms.

Fig. 2.
Fig. 2.

Large-scale (“albumin”) map: (a), (e) histogram, (b), (f) autocorrelation function, (c), (g) logarithmic dependence of the power spectrum, and (d), (i) distribution of the azimuth polarization of blood plasma laser image in [(a)–(d)] healthy persons and [(e)–(i)] a person ill with prostate cancer.

Fig. 3.
Fig. 3.

Small-scale (“globulin”) map: (a), (e) histogram, (b), (f) autocorrelation function, (c), (g) logarithmic dependence of the power spectrum, and (d), (i) distribution of the azimuth polarization of blood plasma laser image in [(a)–(d)] healthy persons and [(e)–(i)] a person ill with prostate cancer.

Fig. 4.
Fig. 4.

Large-scale (“albumin”) map: (a), (e) histogram, (b), (f) autocorrelation function, (c), (g) the logarithmic dependence of the power spectrum, and (d), (i) distribution of the azimuth polarization of blood plasma laser image in [(a)–(d)] healthy persons and [(e)–(i)] a person ill with prostate cancer.

Fig. 5.
Fig. 5.

Small-scale (“globulin”) map: (a), (e) histogram, (b), (f) autocorrelation function, (c), (g) the logarithmic dependence of the power spectrum, and (d), (i) distribution of the azimuth polarization of blood plasma laser image in [(a)–(d)] healthy persons and [(e)–(i)] a person ill with prostate cancer.

Tables (2)

Tables Icon

Table 1. Statistical, Correlation and Self-similar Structure of Polarization Azimuth Maps of Polycrystalline Networks of both Groups

Tables Icon

Table 2. Statistical, Correlation and Self-similar Structure of Polarization Ellipticity Maps of Polycrystalline Networks of Blood Plasma from both Groups

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

{Q}=q11q12q21q22=[sin2ρ+cos2ρexp(iδ)]11[sinρcosρ(1exp(iδ))]12[sinρcosρ(1exp(iδ))]12[cos2ρ+sin2ρexp(iδ)]22,
{A}=a11a12a21a22=cosθsinθsinθcosθ.
E(ρ,δ)={Q}E0,
E(θ)={A}E0.
{α(ρ,δ)=0.5arctan(Ex(ρ,δ)Ey*(ρ,δ)Ey(ρ,δ)Ex*(ρ,δ)Ex(ρ,δ)Ex*(ρ,δ)Ey(ρ,δ)Ey*(ρ,δ)),α(θ)=0.5arctan(Ex(θ)Ey*(θ)Ey(θ)Ex*(θ)Ex(θ)Ex*(θ)Ey(θ)Ey*(θ)).
{β(ρ,δ)=0.5arcsin(i(Ey(ρ,δ)Ex*(ρ,δ)Ex(ρ,δ)Ey*(ρ,δ))Ex(ρ,δ)Ex*(ρ,δ)+Ey(ρ,δ)Ey*(ρ,δ)),β(θ)=0.5arcsin(i(Ey(θ)Ex*(θ)Ex(θ)Ey*(θ))Ex(θ)Ex*(θ)+Ey(θ)Ey*(θ)).
{Ux(Xλf,Yλf)Ux(ν,μ)=FT(Ex(x,y));Uy(Xλf,Yλf)Uy(ν,μ)=FT(Ey(x,y)).
{U^(ρ,δ,ν,μ)=R(Δν,Δμ)U(ν,μ),U˙(θ,ν,μ)=R1(Δν,Δμ)U(ν,μ).
{Ex^(ρ,δ,x,y),Ex˙(θ,x,y);
{Ey^(ρ,δ,x,y)Ey˙(θ,x,y)
{E^x(ρ,δ,x,y)=FT1(R(Δν,Δμ)U^x(ν,μ)),E˙x(θ,x,y)=FT1(R1(Δν,Δμ)U˙x(ν,μ)),E^y(ρ,δ,x,y)=FT1(R(Δν,Δμ)U^y(ν,μ)),E˙y(θ,x,y)=FT1(R1(Δν,Δμ)U˙y(ν,μ)).
{α^(ρ,δ)=0.5arctan(E^xE^y*E^yE^x*E^xE^x*E^yE^y*),α˙(θ)=0.5arctan(E˙xE˙y*E˙yE˙x*E˙xE˙x*E˙yE˙y*);
{β^(ρ,δ)=0.5arcsin(i(E^xE^y*E^yE^x*)E^xE^x*+E^yE^y*),β˙(θ)=0.5arcsin(i(E˙xE˙y*E˙yE˙x*)E˙xE˙x*+E˙yE˙y*).
α=0.5arctg(I45I135I0I90),β=0.5arcsin(III0+I90).
Z1=1Ni=1N|(q)i|,Z2=1Ni=1N(q)i2,Z3=1(Z2)31Ni=1N(q)i3,Z4=1(Z2)41Ni=1N(q)i4.
Ki=1/n(Δm)=limm01m1m[(q)i(m)][(q)i(mΔm)]dm.
K(Δm)=i=1nKi(Δm)n.

Metrics