Abstract

We have studied the tunneling of a circularly polarized optical vortex (OV) in parallel strongly spun elliptical fibers. In this case it is possible to route the OV in a pure state from one of the fibers to another. We have determined the power efficiency of this process and have shown that such a directional coupler can serve for inversion of the topological charge of the incoming vortex.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Nye and M. Berry, “Dislocations in wave trains,” Proc. Roy. Soc. London A 336, 165–190 (1974).
    [CrossRef]
  2. M. Vasnetsov and K. Staliunas, eds., Optical Vortices, Vol. 228 of Horizons in World Physics (Nova Publishers, 1999).
  3. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. 42 (Elsevier, 2001), pp. 219–76.
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [CrossRef]
  5. Z. Bouchal and R. Chelechovsky, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131 (2004).
    [CrossRef]
  6. Z.-K. Su, F.-Q. Wang, R.-B. Jin, R.-S. Liang, and S.-H. Liu, “A simple scheme for quantum networks based on orbital angular momentum states of photons,” Opt. Commun. 281, 5063–5066 (2008).
    [CrossRef]
  7. I. B. Djordjevic, “Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation,” Opt. Express 19, 14277–14289 (2011).
    [CrossRef]
  8. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).
  9. A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Publishers, 2008).
  10. G. Molina-Terriza and M. Padgett, “Special issue on orbital angular momentum,” J. Opt. 13, 060201 (2011).
    [CrossRef]
  11. C. N. Alexeyev, T. A. Fadeyeva, N. A. Boklag, and M. A. Yavorsky, “Tunneling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13, 064012 (2011).
    [CrossRef]
  12. K. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).
  13. C. N. Alexeyev, M. S. Soskin, and A. V. Volyar, “Spin-orbit interaction in a generic vortex field transmitted through an elliptic fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 3, 501–513 (2000).
  14. K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93, 639–642 (2002).
    [CrossRef]
  15. C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Optical angular momentum and mode conversion in optical fibres with competing form and material anisotropy,” J. Opt. A 10, 055009 (2008).
    [CrossRef]
  16. C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Controlling the optical angular momentum by elliptical anisotropic fibres,” J. Opt. A 11, 105406 (2009).
    [CrossRef]
  17. C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A 6, 824–832 (2004).
    [CrossRef]
  18. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
    [CrossRef]
  19. K. N. Alekseev and M. A. Yavorskii, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spectrosc. 98, 53–60 (2005).
    [CrossRef]
  20. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74–75 (2004).
    [CrossRef]
  21. V. S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period gratings by use of a CO2 laser,” Opt. Lett. 29, 1464–1466 (2004).
    [CrossRef]
  22. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Single- and double-helix chiral fiber sensors,” J. Opt. Soc. Am. B 24, A48–A51 (2007).
    [CrossRef]
  23. C. N. Alexeyev, T. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A 11, 094011 (2009).
    [CrossRef]
  24. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1985).
  25. A. Galtarossa and C. R. Menyuk, eds. Polarization Mode Dispersion. Optical and Fiber Communications Reports (Springer, 2005).
  26. C. N. Alexeyev, N. A. Boklag, and M. A. Yavorsky, “Higher order modes of coupled optical fibres,” J. Opt. 12, 115704 (2010).
    [CrossRef]
  27. A. S. Davydov, Quantum Mechanics (Pergamon/Oxford, 1976).

2011 (3)

G. Molina-Terriza and M. Padgett, “Special issue on orbital angular momentum,” J. Opt. 13, 060201 (2011).
[CrossRef]

C. N. Alexeyev, T. A. Fadeyeva, N. A. Boklag, and M. A. Yavorsky, “Tunneling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13, 064012 (2011).
[CrossRef]

I. B. Djordjevic, “Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation,” Opt. Express 19, 14277–14289 (2011).
[CrossRef]

2010 (1)

C. N. Alexeyev, N. A. Boklag, and M. A. Yavorsky, “Higher order modes of coupled optical fibres,” J. Opt. 12, 115704 (2010).
[CrossRef]

2009 (2)

C. N. Alexeyev, T. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A 11, 094011 (2009).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Controlling the optical angular momentum by elliptical anisotropic fibres,” J. Opt. A 11, 105406 (2009).
[CrossRef]

2008 (2)

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Optical angular momentum and mode conversion in optical fibres with competing form and material anisotropy,” J. Opt. A 10, 055009 (2008).
[CrossRef]

Z.-K. Su, F.-Q. Wang, R.-B. Jin, R.-S. Liang, and S.-H. Liu, “A simple scheme for quantum networks based on orbital angular momentum states of photons,” Opt. Commun. 281, 5063–5066 (2008).
[CrossRef]

2007 (1)

2006 (1)

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
[CrossRef]

2005 (1)

K. N. Alekseev and M. A. Yavorskii, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spectrosc. 98, 53–60 (2005).
[CrossRef]

2004 (5)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74–75 (2004).
[CrossRef]

V. S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period gratings by use of a CO2 laser,” Opt. Lett. 29, 1464–1466 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef]

Z. Bouchal and R. Chelechovsky, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131 (2004).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A 6, 824–832 (2004).
[CrossRef]

2002 (1)

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93, 639–642 (2002).
[CrossRef]

2000 (1)

C. N. Alexeyev, M. S. Soskin, and A. V. Volyar, “Spin-orbit interaction in a generic vortex field transmitted through an elliptic fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 3, 501–513 (2000).

1998 (1)

K. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

1974 (1)

J. F. Nye and M. Berry, “Dislocations in wave trains,” Proc. Roy. Soc. London A 336, 165–190 (1974).
[CrossRef]

Alekseev, K. N.

K. N. Alekseev and M. A. Yavorskii, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spectrosc. 98, 53–60 (2005).
[CrossRef]

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93, 639–642 (2002).
[CrossRef]

Alexeyev, A. N.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Controlling the optical angular momentum by elliptical anisotropic fibres,” J. Opt. A 11, 105406 (2009).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Optical angular momentum and mode conversion in optical fibres with competing form and material anisotropy,” J. Opt. A 10, 055009 (2008).
[CrossRef]

Alexeyev, C. N.

C. N. Alexeyev, T. A. Fadeyeva, N. A. Boklag, and M. A. Yavorsky, “Tunneling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13, 064012 (2011).
[CrossRef]

C. N. Alexeyev, N. A. Boklag, and M. A. Yavorsky, “Higher order modes of coupled optical fibres,” J. Opt. 12, 115704 (2010).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Controlling the optical angular momentum by elliptical anisotropic fibres,” J. Opt. A 11, 105406 (2009).
[CrossRef]

C. N. Alexeyev, T. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A 11, 094011 (2009).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Optical angular momentum and mode conversion in optical fibres with competing form and material anisotropy,” J. Opt. A 10, 055009 (2008).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A 6, 824–832 (2004).
[CrossRef]

C. N. Alexeyev, M. S. Soskin, and A. V. Volyar, “Spin-orbit interaction in a generic vortex field transmitted through an elliptic fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 3, 501–513 (2000).

Alexeyev, K. N.

K. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

Allen, L.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).

Barnett, S.

Barnett, S. M.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).

Bekshaev, A.

A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Publishers, 2008).

Berry, M.

J. F. Nye and M. Berry, “Dislocations in wave trains,” Proc. Roy. Soc. London A 336, 165–190 (1974).
[CrossRef]

Boklag, N. A.

C. N. Alexeyev, T. A. Fadeyeva, N. A. Boklag, and M. A. Yavorsky, “Tunneling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13, 064012 (2011).
[CrossRef]

C. N. Alexeyev, N. A. Boklag, and M. A. Yavorsky, “Higher order modes of coupled optical fibres,” J. Opt. 12, 115704 (2010).
[CrossRef]

Borshak, T. V.

C. N. Alexeyev, T. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A 11, 094011 (2009).
[CrossRef]

Bouchal, Z.

Z. Bouchal and R. Chelechovsky, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131 (2004).
[CrossRef]

Chao, N.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Single- and double-helix chiral fiber sensors,” J. Opt. Soc. Am. B 24, A48–A51 (2007).
[CrossRef]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74–75 (2004).
[CrossRef]

Chelechovsky, R.

Z. Bouchal and R. Chelechovsky, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131 (2004).
[CrossRef]

Chung, Y.

Churikov, V. M.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Single- and double-helix chiral fiber sensors,” J. Opt. Soc. Am. B 24, A48–A51 (2007).
[CrossRef]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74–75 (2004).
[CrossRef]

Courtial, J.

Davydov, A. S.

A. S. Davydov, Quantum Mechanics (Pergamon/Oxford, 1976).

Djordjevic, I. B.

Fadeeva, T. A.

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93, 639–642 (2002).
[CrossRef]

Fadeyeva, T. A.

C. N. Alexeyev, T. A. Fadeyeva, N. A. Boklag, and M. A. Yavorsky, “Tunneling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13, 064012 (2011).
[CrossRef]

K. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

Franke-Arnold, S.

Genack, A. Z.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Single- and double-helix chiral fiber sensors,” J. Opt. Soc. Am. B 24, A48–A51 (2007).
[CrossRef]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74–75 (2004).
[CrossRef]

Gibson, G.

Jin, R.-B.

Z.-K. Su, F.-Q. Wang, R.-B. Jin, R.-S. Liang, and S.-H. Liu, “A simple scheme for quantum networks based on orbital angular momentum states of photons,” Opt. Commun. 281, 5063–5066 (2008).
[CrossRef]

Kopp, V. I.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Single- and double-helix chiral fiber sensors,” J. Opt. Soc. Am. B 24, A48–A51 (2007).
[CrossRef]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74–75 (2004).
[CrossRef]

Lapin, B. P.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Controlling the optical angular momentum by elliptical anisotropic fibres,” J. Opt. A 11, 105406 (2009).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Optical angular momentum and mode conversion in optical fibres with competing form and material anisotropy,” J. Opt. A 10, 055009 (2008).
[CrossRef]

Lee, K. R.

Liang, R.-S.

Z.-K. Su, F.-Q. Wang, R.-B. Jin, R.-S. Liang, and S.-H. Liu, “A simple scheme for quantum networks based on orbital angular momentum states of photons,” Opt. Commun. 281, 5063–5066 (2008).
[CrossRef]

Liu, S.-H.

Z.-K. Su, F.-Q. Wang, R.-B. Jin, R.-S. Liang, and S.-H. Liu, “A simple scheme for quantum networks based on orbital angular momentum states of photons,” Opt. Commun. 281, 5063–5066 (2008).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1985).

Molina-Terriza, G.

G. Molina-Terriza and M. Padgett, “Special issue on orbital angular momentum,” J. Opt. 13, 060201 (2011).
[CrossRef]

Neugroschl, D.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Single- and double-helix chiral fiber sensors,” J. Opt. Soc. Am. B 24, A48–A51 (2007).
[CrossRef]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74–75 (2004).
[CrossRef]

Nye, J. F.

J. F. Nye and M. Berry, “Dislocations in wave trains,” Proc. Roy. Soc. London A 336, 165–190 (1974).
[CrossRef]

Oh, V. S.

Padgett, M.

Padgett, M. J.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).

Paek, U. C.

Pas’ko, V.

Singer, J.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Single- and double-helix chiral fiber sensors,” J. Opt. Soc. Am. B 24, A48–A51 (2007).
[CrossRef]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74–75 (2004).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1985).

Soskin, M.

A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Publishers, 2008).

Soskin, M. S.

C. N. Alexeyev, M. S. Soskin, and A. V. Volyar, “Spin-orbit interaction in a generic vortex field transmitted through an elliptic fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 3, 501–513 (2000).

K. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. 42 (Elsevier, 2001), pp. 219–76.

Su, Z.-K.

Z.-K. Su, F.-Q. Wang, R.-B. Jin, R.-S. Liang, and S.-H. Liu, “A simple scheme for quantum networks based on orbital angular momentum states of photons,” Opt. Commun. 281, 5063–5066 (2008).
[CrossRef]

Vasnetsov, M.

Vasnetsov, M. V.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. 42 (Elsevier, 2001), pp. 219–76.

Volyar, A. V.

C. N. Alexeyev, T. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A 11, 094011 (2009).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
[CrossRef]

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93, 639–642 (2002).
[CrossRef]

C. N. Alexeyev, M. S. Soskin, and A. V. Volyar, “Spin-orbit interaction in a generic vortex field transmitted through an elliptic fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 3, 501–513 (2000).

K. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

Wang, F.-Q.

Z.-K. Su, F.-Q. Wang, R.-B. Jin, R.-S. Liang, and S.-H. Liu, “A simple scheme for quantum networks based on orbital angular momentum states of photons,” Opt. Commun. 281, 5063–5066 (2008).
[CrossRef]

Yavorskii, M. A.

K. N. Alekseev and M. A. Yavorskii, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spectrosc. 98, 53–60 (2005).
[CrossRef]

Yavorsky, M. A.

C. N. Alexeyev, T. A. Fadeyeva, N. A. Boklag, and M. A. Yavorsky, “Tunneling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13, 064012 (2011).
[CrossRef]

C. N. Alexeyev, N. A. Boklag, and M. A. Yavorsky, “Higher order modes of coupled optical fibres,” J. Opt. 12, 115704 (2010).
[CrossRef]

C. N. Alexeyev, T. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A 11, 094011 (2009).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Controlling the optical angular momentum by elliptical anisotropic fibres,” J. Opt. A 11, 105406 (2009).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Optical angular momentum and mode conversion in optical fibres with competing form and material anisotropy,” J. Opt. A 10, 055009 (2008).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A 6, 824–832 (2004).
[CrossRef]

J. Opt. (3)

G. Molina-Terriza and M. Padgett, “Special issue on orbital angular momentum,” J. Opt. 13, 060201 (2011).
[CrossRef]

C. N. Alexeyev, T. A. Fadeyeva, N. A. Boklag, and M. A. Yavorsky, “Tunneling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13, 064012 (2011).
[CrossRef]

C. N. Alexeyev, N. A. Boklag, and M. A. Yavorsky, “Higher order modes of coupled optical fibres,” J. Opt. 12, 115704 (2010).
[CrossRef]

J. Opt. A (5)

C. N. Alexeyev, T. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A 11, 094011 (2009).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Optical angular momentum and mode conversion in optical fibres with competing form and material anisotropy,” J. Opt. A 10, 055009 (2008).
[CrossRef]

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, “Controlling the optical angular momentum by elliptical anisotropic fibres,” J. Opt. A 11, 105406 (2009).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A 6, 824–832 (2004).
[CrossRef]

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, “Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex,” J. Opt. A 8, L5–L9 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

New J. Phys. (1)

Z. Bouchal and R. Chelechovsky, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131 (2004).
[CrossRef]

Opt. Commun. (1)

Z.-K. Su, F.-Q. Wang, R.-B. Jin, R.-S. Liang, and S.-H. Liu, “A simple scheme for quantum networks based on orbital angular momentum states of photons,” Opt. Commun. 281, 5063–5066 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Spectrosc. (2)

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93, 639–642 (2002).
[CrossRef]

K. N. Alekseev and M. A. Yavorskii, “Twisted optical fibers sustaining propagation of optical vortices,” Opt. Spectrosc. 98, 53–60 (2005).
[CrossRef]

Proc. Roy. Soc. London A (1)

J. F. Nye and M. Berry, “Dislocations in wave trains,” Proc. Roy. Soc. London A 336, 165–190 (1974).
[CrossRef]

Science (1)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74–75 (2004).
[CrossRef]

Semicond. Phys. Quantum Electron. Optoelectron. (2)

K. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, “Optical vortices and the flow of their angular momentum in a multimode fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 1, 82–89 (1998).

C. N. Alexeyev, M. S. Soskin, and A. V. Volyar, “Spin-orbit interaction in a generic vortex field transmitted through an elliptic fiber,” Semicond. Phys. Quantum Electron. Optoelectron. 3, 501–513 (2000).

Other (7)

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, 2003).

A. Bekshaev, M. Soskin, and M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Publishers, 2008).

M. Vasnetsov and K. Staliunas, eds., Optical Vortices, Vol. 228 of Horizons in World Physics (Nova Publishers, 1999).

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. 42 (Elsevier, 2001), pp. 219–76.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1985).

A. Galtarossa and C. R. Menyuk, eds. Polarization Mode Dispersion. Optical and Fiber Communications Reports (Springer, 2005).

A. S. Davydov, Quantum Mechanics (Pergamon/Oxford, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Geometry of coupled fibers: (a) general configuration of the system and its main parameters: pitch H and spacing L and (b) axial-polar coordinates for individual fibers in the transverse cross section.

Fig. 2.
Fig. 2.

Dependence of characteristic lengths Z1 and Z2 on reduced length L/r0. Fiber parameters: waveguide parameter V=4.16, Δ=103, r0=10λHe-Ne.

Fig. 3.
Fig. 3.

Dependence of squared modules |Ak(i)|2 of tunneled l=1 OV on k at fixed distances L between the centers of the fibers: (a) L=3r0 and (b) L=5r0; V=4.16, Δ=103, r0=10λHe-Ne.

Fig. 4.
Fig. 4.

Dependence of squared modules |Ak(i)|2 of tunneled l=1 OV on reduced length L/r0 for k=0,1; V=4.16, Δ=103, r0=10λHe-Ne.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

|σ,l=(1iσ)eilφFl(r).
β(|1,1)=β(|1,1)β+=β˜+D14qβ˜·D12β˜,β(|1,1)=β(|1,1)β=β˜D14qβ˜·D12β˜.
|1|1,1,|2|1,1,|3|1,1,|4|1,1,
(t2+Vl+Vr)et=β2et,
Vr=2k2nco2Δθ(1r/r0).
|1,1,L(R),|1,1,L(R),|1,1,L(R),|1,1,L(R).
i|H^|j=S(ψi*,φi*)H^(ψiφi)dS,
{|1,1,L,|1,1,L,|1,1,R,|1,1,R}.
H=(β+20c1d10β2d1c1c1d1β+20d1c10β2),
cl=2k2nco2r02ΔNl1n=0n=lClnΛln02πcos[(ln)φ)]dφ01Rn+1R˜lKl(R˜)Jl(R)dR,
dl=2k2nco2r02ΔNl1n=0n=lClnΛn02πcos[(2ln)φ]dφ01Rln+1R˜lKl(R˜)Jl(R)dR.
x(x1,x2,x3,x4)|ψ=x1|1,L+x2|1,L+x3|1,R+x4|1,R.
|ψ1=|1,L+|1,L+|1,R+|1,R,|ψ2=|1,L+|1,L|1,R|1,R,|ψ3=|1,L+|1,L|1,R+|1,R,|ψ4=|1,L+|1,L+|1,R|1,R.
β1=β˜+c1+d12β˜,β2=β˜c1+d12β˜,β3=β˜+c1d12β˜,β4=β˜c1d12β˜,
|1,L(z)={cos(zΔβ)[cos(zΔβ¯)|1,L+isin(zΔβ¯)|1,R]sin(zΔβ)[sin(zΔβ¯)|1,Licos(zΔβ¯)|1,R]}exp(iβ˜z),
|R=i[sin(zΔβ¯)cos(zΔβ)|1,R+cos(zΔβ¯)sin(zΔβ)|1,R]exp(iβ˜z).
zk(1)=(2k+1)π2Δβ¯,zk(2)=(k+1)πΔβ.
Ak(1)=sin(2k+1)πd12c1,Ak(1)=cos(k+1)πc12d1,
|Rsin(zΔβ¯l)cos(zΔβl)|l,R+cos(zΔβ¯l)sin(zΔβl)|l,R,

Metrics