Abstract

A tapered fiber-slab waveguide coupler (TFSC) is proposed in this paper. Both the numerical analysis based on the beam propagation method and experiments are used for investigating the dependencies of TFSC transmission features on their geometric parameters. From the simulations and experimental results, the rules for fabricating a TFSC with low transmission loss and sharp resonant spectra by optimizing the configuration parameters are presented. The conclusions derived from our work may provide helpful references for optimally designing and fabricating TFSC-based devices, such as sensors, wavelength filters, and intensity modulators.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Millar, M. C. Brierley, and S. R. Mallinson, “Exposed-core single-mode-fiber channel-dropping filter using a high-index overlay wave-guide,” Opt. Lett. 12, 284–286 (1987).
    [CrossRef]
  2. I. S. Mauchline, W. I. Madden, and W. Johnstone, “Low voltage tunable in-line channel dropping filter using liquid crystal waveguide overlays,” Electron. Lett. 33, 985–986 (1997).
    [CrossRef]
  3. C. H. Lee, N. K. Lee, and J. W. Song, “Tunable side-polished optical fiber filter using the thermosensitive characteristics of the polymer dispersed liquid crystal,” Microw. Opt. Technol. Lett. 48, 1229–1230 (2006).
    [CrossRef]
  4. A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si: H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330, 150–156 (1998).
    [CrossRef]
  5. G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fiberoptic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
    [CrossRef]
  6. W. G. Jung, S. W. Kim, K. T. Kim, E. S. Kim, and S. W. Kang, “High sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
    [CrossRef]
  7. A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
    [CrossRef]
  8. C. H. Lee, J. H. Kim, J. H. Park, and J. W. Song, “Reflective side-polished optical fiber submersion sensor using an optical fiber mirror for remote sensing,” IEEE Photon. Technol. Lett. 19, 583–585 (2007).
    [CrossRef]
  9. R. Gibson, R. Selfridge, and S. Schultz, “Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides,” Appl. Opt. 48, 3695–3701 (2009).
    [CrossRef]
  10. R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240 (2008).
    [CrossRef]
  11. W. Henry, “Evanescent field devices: a comparison between tapered optical fibers and polished or D fibres,” Opt. Quantum Electron. 26, S261–S272 (1994).
    [CrossRef]
  12. M. S. Dinleyici, “An experimental work on optical component based on D fiber/slab evanescent coupling structure,” Opt. Quantum Electron. 35, 75–84 (2003).
    [CrossRef]
  13. S. M. Schultz, K. H. Smith, D. J. Markos, B. L. Ipson, R. H. Selfridge, J. P. Barber, K. J. Campbell, T. D. Monte, and R. B. Dyott, “Fabrication and analysis of a low-loss in-fiber active polymer waveguide,” Appl. Opt. 43, 933–939 (2004).
    [CrossRef]
  14. D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
    [CrossRef]

2009

2008

2007

C. H. Lee, J. H. Kim, J. H. Park, and J. W. Song, “Reflective side-polished optical fiber submersion sensor using an optical fiber mirror for remote sensing,” IEEE Photon. Technol. Lett. 19, 583–585 (2007).
[CrossRef]

2006

C. H. Lee, N. K. Lee, and J. W. Song, “Tunable side-polished optical fiber filter using the thermosensitive characteristics of the polymer dispersed liquid crystal,” Microw. Opt. Technol. Lett. 48, 1229–1230 (2006).
[CrossRef]

2004

2003

M. S. Dinleyici, “An experimental work on optical component based on D fiber/slab evanescent coupling structure,” Opt. Quantum Electron. 35, 75–84 (2003).
[CrossRef]

2001

W. G. Jung, S. W. Kim, K. T. Kim, E. S. Kim, and S. W. Kang, “High sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[CrossRef]

2000

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

1998

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si: H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330, 150–156 (1998).
[CrossRef]

1997

I. S. Mauchline, W. I. Madden, and W. Johnstone, “Low voltage tunable in-line channel dropping filter using liquid crystal waveguide overlays,” Electron. Lett. 33, 985–986 (1997).
[CrossRef]

1994

W. Henry, “Evanescent field devices: a comparison between tapered optical fibers and polished or D fibres,” Opt. Quantum Electron. 26, S261–S272 (1994).
[CrossRef]

1992

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fiberoptic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

1989

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

1987

Alvarez-Herrero, A.

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

Andonovic, I.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fiberoptic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Andreev, A.

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si: H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330, 150–156 (1998).
[CrossRef]

Barber, J. P.

Belenguer, T.

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

Bone, D. J.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fiberoptic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Brierley, M. C.

Campbell, K. J.

Carter, N.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fiberoptic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Danesh, P.

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si: H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330, 150–156 (1998).
[CrossRef]

Dinleyici, M. S.

M. S. Dinleyici, “An experimental work on optical component based on D fiber/slab evanescent coupling structure,” Opt. Quantum Electron. 35, 75–84 (2003).
[CrossRef]

Dyott, R. B.

Fawcett, G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fiberoptic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Forber, R.

Gibson, R.

Guerrero, H.

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

Harvey, T. G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fiberoptic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Henry, W.

W. Henry, “Evanescent field devices: a comparison between tapered optical fibers and polished or D fibres,” Opt. Quantum Electron. 26, S261–S272 (1994).
[CrossRef]

Ipson, B. L.

Johnstone, W.

I. S. Mauchline, W. I. Madden, and W. Johnstone, “Low voltage tunable in-line channel dropping filter using liquid crystal waveguide overlays,” Electron. Lett. 33, 985–986 (1997).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fiberoptic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Jung, W. G.

W. G. Jung, S. W. Kim, K. T. Kim, E. S. Kim, and S. W. Kang, “High sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[CrossRef]

Kang, S. W.

W. G. Jung, S. W. Kim, K. T. Kim, E. S. Kim, and S. W. Kang, “High sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[CrossRef]

Karakoleva, E.

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si: H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330, 150–156 (1998).
[CrossRef]

Kim, E. S.

W. G. Jung, S. W. Kim, K. T. Kim, E. S. Kim, and S. W. Kang, “High sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[CrossRef]

Kim, J. H.

C. H. Lee, J. H. Kim, J. H. Park, and J. W. Song, “Reflective side-polished optical fiber submersion sensor using an optical fiber mirror for remote sensing,” IEEE Photon. Technol. Lett. 19, 583–585 (2007).
[CrossRef]

Kim, K. T.

W. G. Jung, S. W. Kim, K. T. Kim, E. S. Kim, and S. W. Kang, “High sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[CrossRef]

Kim, S. W.

W. G. Jung, S. W. Kim, K. T. Kim, E. S. Kim, and S. W. Kang, “High sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[CrossRef]

Lee, C. H.

C. H. Lee, J. H. Kim, J. H. Park, and J. W. Song, “Reflective side-polished optical fiber submersion sensor using an optical fiber mirror for remote sensing,” IEEE Photon. Technol. Lett. 19, 583–585 (2007).
[CrossRef]

C. H. Lee, N. K. Lee, and J. W. Song, “Tunable side-polished optical fiber filter using the thermosensitive characteristics of the polymer dispersed liquid crystal,” Microw. Opt. Technol. Lett. 48, 1229–1230 (2006).
[CrossRef]

Lee, N. K.

C. H. Lee, N. K. Lee, and J. W. Song, “Tunable side-polished optical fiber filter using the thermosensitive characteristics of the polymer dispersed liquid crystal,” Microw. Opt. Technol. Lett. 48, 1229–1230 (2006).
[CrossRef]

Levy, D.

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

Madden, W. I.

I. S. Mauchline, W. I. Madden, and W. Johnstone, “Low voltage tunable in-line channel dropping filter using liquid crystal waveguide overlays,” Electron. Lett. 33, 985–986 (1997).
[CrossRef]

Mallinson, S. R.

Marcuse, D.

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

Markos, D. J.

Mauchline, I. S.

I. S. Mauchline, W. I. Madden, and W. Johnstone, “Low voltage tunable in-line channel dropping filter using liquid crystal waveguide overlays,” Electron. Lett. 33, 985–986 (1997).
[CrossRef]

Millar, C. A.

Monte, T. D.

Pantchev, B.

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si: H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330, 150–156 (1998).
[CrossRef]

Park, J. H.

C. H. Lee, J. H. Kim, J. H. Park, and J. W. Song, “Reflective side-polished optical fiber submersion sensor using an optical fiber mirror for remote sensing,” IEEE Photon. Technol. Lett. 19, 583–585 (2007).
[CrossRef]

Ryan, T. G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fiberoptic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Schultz, S.

Schultz, S. M.

Selfridge, R.

Selfridge, R. H.

Smith, K. H.

Song, J. W.

C. H. Lee, J. H. Kim, J. H. Park, and J. W. Song, “Reflective side-polished optical fiber submersion sensor using an optical fiber mirror for remote sensing,” IEEE Photon. Technol. Lett. 19, 583–585 (2007).
[CrossRef]

C. H. Lee, N. K. Lee, and J. W. Song, “Tunable side-polished optical fiber filter using the thermosensitive characteristics of the polymer dispersed liquid crystal,” Microw. Opt. Technol. Lett. 48, 1229–1230 (2006).
[CrossRef]

Wang, W.

Zafirova, B.

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si: H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330, 150–156 (1998).
[CrossRef]

Appl. Opt.

Electron. Lett.

I. S. Mauchline, W. I. Madden, and W. Johnstone, “Low voltage tunable in-line channel dropping filter using liquid crystal waveguide overlays,” Electron. Lett. 33, 985–986 (1997).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, and T. G. Ryan, “In-line fiberoptic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

W. G. Jung, S. W. Kim, K. T. Kim, E. S. Kim, and S. W. Kang, “High sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[CrossRef]

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

C. H. Lee, J. H. Kim, J. H. Park, and J. W. Song, “Reflective side-polished optical fiber submersion sensor using an optical fiber mirror for remote sensing,” IEEE Photon. Technol. Lett. 19, 583–585 (2007).
[CrossRef]

J. Lightwave Technol.

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

Microw. Opt. Technol. Lett.

C. H. Lee, N. K. Lee, and J. W. Song, “Tunable side-polished optical fiber filter using the thermosensitive characteristics of the polymer dispersed liquid crystal,” Microw. Opt. Technol. Lett. 48, 1229–1230 (2006).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

W. Henry, “Evanescent field devices: a comparison between tapered optical fibers and polished or D fibres,” Opt. Quantum Electron. 26, S261–S272 (1994).
[CrossRef]

M. S. Dinleyici, “An experimental work on optical component based on D fiber/slab evanescent coupling structure,” Opt. Quantum Electron. 35, 75–84 (2003).
[CrossRef]

Thin Solid Films

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si: H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330, 150–156 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Construction and resonant transmission spectrum of TFSC. (a) Schematic of the TFSC. (b) Resonant coupling spectrum of the TFSC, and the definitions of various characteristics.

Fig. 2.
Fig. 2.

Transmission spectra for four different values of gs. (nf=1.46, ns=1.8, ne=1, rf=1μm, ds=10μm, L=1mm.)

Fig. 3.
Fig. 3.

Transmission spectra using coupling oil with four different refractive indices ne. (nf=1.46, ns=1.8, rf=1μm, ds=10μm, gs=0.3μm, and L=1mm.)

Fig. 4.
Fig. 4.

Transmission spectra for four different values of the waist radii rf (nf=1.46, ns=1.8, ne=1.45, ds=10μm, gs=0.3μm, L=1mm.)

Fig. 5.
Fig. 5.

Transmission spectra for four different values of slab thickness ds (nf=1.46, ns=1.8, ne=1, rf=1μm, gs=0.3μm, L=1mm.)

Fig. 6.
Fig. 6.

Transmission power in the fiber as a function of propagation distance for four different input wavelengths λ (nf=1.46, ns=1.8, ne=1, rf=1μm, ds=10μm, gs=0.3μm.)

Fig. 7.
Fig. 7.

Transmission spectra for four different values of the interaction length L. (nf=1.46, ns=1.8, ne=1, rf=1μm, ds=10μm, gs=0.3μm.)

Fig. 8.
Fig. 8.

Experiment system.

Fig. 9.
Fig. 9.

Transmission spectra against wavelength for different separations.

Fig. 10.
Fig. 10.

Transmission spectra against wavelength using coupling oil with different refractive indices.

Fig. 11.
Fig. 11.

Transmission spectra against wavelength for different interaction length.

Metrics