Abstract

The model of generalized optical anisotropy of human bile is suggested, and the method of the polarimetric phase Fourier transform of the image of the laser radiation field that is generated by the mechanisms of linear and circular birefringence of polycrystalline networks with a wavelet-diagnosis of cholelithiasis is analytically substantiated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, G. Yao, and L.-H. Wang, “Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002).
    [CrossRef]
  2. X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
    [CrossRef]
  3. X. Wang, L.-H. Wang, C.-W. Sun, and C. C. Yang, “Polarized light propagation through the scattering media: time-resolved Monte Carlo and experiments,” J. Biomed. Opt. 8, 608–617 (2003).
    [CrossRef]
  4. V. Tuchin, ed., Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science (Kluwer Academic, 2004).
  5. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  6. M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).
  7. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef]
  8. M. J. Everett, K. Shoenenberger, B. W. Colston, and L. B. da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
    [CrossRef]
  9. J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.
  10. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
    [CrossRef]
  11. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
    [CrossRef]
  12. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
    [CrossRef]
  13. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
    [CrossRef]
  14. V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
    [CrossRef]
  15. A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
    [CrossRef]
  16. S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
    [CrossRef]
  17. A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
    [CrossRef]
  18. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
    [CrossRef]
  19. O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in bio tissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).
  20. S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
    [CrossRef]
  21. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
  22. O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
    [CrossRef]
  23. O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
    [CrossRef]
  24. A.G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
    [CrossRef]
  25. O. V. Angelsky, Yu. Ya Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D: Appl. Phys. 38, 4227–4235 (2005).
    [CrossRef]
  26. O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D: Appl. Phys. 39, 3547–3558(2006).
    [CrossRef]
  27. O. V. Angelsky, G. V. Demianovsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotisues for diagnosing pathological changes,” J Biomed. Opt. 9, 679–690 (2004).
    [CrossRef]
  28. O. V. Dubolazov, A. G. Ushenko, V. T. Bachynsky, A. P. Peresunko, and O. Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals,” Adv. Opt. Technol. 2010, 162832 (2010).
    [CrossRef]
  29. O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
    [CrossRef]
  30. Yu. F. Marchuk, A. G. Ushenko, A. I. Fediv, and Yu. F. Marchuk, “Singular structure of polarization images of bile secret in diagnostics of human physiological state,” Proc. SPIE 7368, 73681S (2009).
  31. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.
  32. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).
  33. D. H. Goldstein, Polarized Light (Marcel Dekker, 2003).
  34. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  35. R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).

2010 (2)

G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).

O. V. Dubolazov, A. G. Ushenko, V. T. Bachynsky, A. P. Peresunko, and O. Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals,” Adv. Opt. Technol. 2010, 162832 (2010).
[CrossRef]

2009 (2)

Yu. F. Marchuk, A. G. Ushenko, A. I. Fediv, and Yu. F. Marchuk, “Singular structure of polarization images of bile secret in diagnostics of human physiological state,” Proc. SPIE 7368, 73681S (2009).

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

2008 (2)

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

2006 (2)

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D: Appl. Phys. 39, 3547–3558(2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

2005 (3)

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

O. V. Angelsky, Yu. Ya Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D: Appl. Phys. 38, 4227–4235 (2005).
[CrossRef]

2004 (1)

O. V. Angelsky, G. V. Demianovsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotisues for diagnosing pathological changes,” J Biomed. Opt. 9, 679–690 (2004).
[CrossRef]

2003 (1)

X. Wang, L.-H. Wang, C.-W. Sun, and C. C. Yang, “Polarized light propagation through the scattering media: time-resolved Monte Carlo and experiments,” J. Biomed. Opt. 8, 608–617 (2003).
[CrossRef]

2002 (4)

X. Wang, G. Yao, and L.-H. Wang, “Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002).
[CrossRef]

X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

A.G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).

2001 (2)

A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
[CrossRef]

G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
[CrossRef]

2000 (4)

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in bio tissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (2)

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef]

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

1990 (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Angel’skii, O. V.

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in bio tissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Angelsky, O. V.

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D: Appl. Phys. 39, 3547–3558(2006).
[CrossRef]

O. V. Angelsky, Yu. Ya Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D: Appl. Phys. 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

O. V. Angelsky, G. V. Demianovsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotisues for diagnosing pathological changes,” J Biomed. Opt. 9, 679–690 (2004).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).

Arkhelyuk, A. D.

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

Arkhelyuk, O. D.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in bio tissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Bachyns’ka, I.

G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).

Bachynsky, V. T.

O. V. Dubolazov, A. G. Ushenko, V. T. Bachynsky, A. P. Peresunko, and O. Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals,” Adv. Opt. Technol. 2010, 162832 (2010).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Burch, J. M.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

Burkovets, D. N.

O. V. Angelsky, G. V. Demianovsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotisues for diagnosing pathological changes,” J Biomed. Opt. 9, 679–690 (2004).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in bio tissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Colston, B. W.

de Boer, J. F.

Demianovsky, G. V.

O. V. Angelsky, G. V. Demianovsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotisues for diagnosing pathological changes,” J Biomed. Opt. 9, 679–690 (2004).
[CrossRef]

Dubolazov, O. V.

O. V. Dubolazov, A. G. Ushenko, V. T. Bachynsky, A. P. Peresunko, and O. Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals,” Adv. Opt. Technol. 2010, 162832 (2010).
[CrossRef]

Ducros, M. G.

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Ermolenko, S. B.

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

Everett, M. J.

Fediv, A. I.

Yu. F. Marchuk, A. G. Ushenko, A. I. Fediv, and Yu. F. Marchuk, “Singular structure of polarization images of bile secret in diagnostics of human physiological state,” Proc. SPIE 7368, 73681S (2009).

Gavrila, C.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Gerrard, A.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

Goldstein, D. H.

D. H. Goldstein, Polarized Light (Marcel Dekker, 2003).

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

Goudail, F.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Gruia, I.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Gryhoryshyn, P.

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Grynchuk, F. V.

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Guminetskiy, S. H.

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Guminetsky, S.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Istratiy, V.

G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).

Ivashko, P.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Jozwicki, R.

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).

Marchuk, Yu. F.

Yu. F. Marchuk, A. G. Ushenko, A. I. Fediv, and Yu. F. Marchuk, “Singular structure of polarization images of bile secret in diagnostics of human physiological state,” Proc. SPIE 7368, 73681S (2009).

Yu. F. Marchuk, A. G. Ushenko, A. I. Fediv, and Yu. F. Marchuk, “Singular structure of polarization images of bile secret in diagnostics of human physiological state,” Proc. SPIE 7368, 73681S (2009).

Mikhailova, A.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Milner, T. E.

Misevich, I. Z.

G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).

Moiysuk, T. G.

G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).

Motrych, A. V.

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Nelson, J. S.

Numan, O. K.

G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).

Patorski, K.

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).

Peresunko, A. P.

O. V. Dubolazov, A. G. Ushenko, V. T. Bachynsky, A. P. Peresunko, and O. Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals,” Adv. Opt. Technol. 2010, 162832 (2010).
[CrossRef]

G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).

Pishak, O.

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Pishak, V.

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Pishak, V. P.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

Polyanskiy, I. P.

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

Prahl, S. A.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Prydij, A.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Rudeychuk, V.

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Shoenenberger, K.

Silva, L. B. da

Srinivas, S. M.

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Sun, C.-W.

X. Wang, L.-H. Wang, C.-W. Sun, and C. C. Yang, “Polarized light propagation through the scattering media: time-resolved Monte Carlo and experiments,” J. Biomed. Opt. 8, 608–617 (2003).
[CrossRef]

Toma, O.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Tomka, Y. Y.

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

Tomka, Yu. Ya

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, Yu. Ya Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D: Appl. Phys. 38, 4227–4235 (2005).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).

Ushenko, A.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Ushenko, A. G.

O. V. Dubolazov, A. G. Ushenko, V. T. Bachynsky, A. P. Peresunko, and O. Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals,” Adv. Opt. Technol. 2010, 162832 (2010).
[CrossRef]

Yu. F. Marchuk, A. G. Ushenko, A. I. Fediv, and Yu. F. Marchuk, “Singular structure of polarization images of bile secret in diagnostics of human physiological state,” Proc. SPIE 7368, 73681S (2009).

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D: Appl. Phys. 39, 3547–3558(2006).
[CrossRef]

O. V. Angelsky, Yu. Ya Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D: Appl. Phys. 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

O. V. Angelsky, G. V. Demianovsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotisues for diagnosing pathological changes,” J Biomed. Opt. 9, 679–690 (2004).
[CrossRef]

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).

A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

Ushenko, A.G.

A.G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
[CrossRef]

Ushenko, G.

G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).

G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
[CrossRef]

G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

Ushenko, O. G.

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in bio tissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Ushenko, Y. A.

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).

Ushenko, Y. G.

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

Ushenko, Ye. G.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D: Appl. Phys. 39, 3547–3558(2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

O. V. Angelsky, Yu. Ya Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D: Appl. Phys. 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

Ushenko, Yu. A.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D: Appl. Phys. 39, 3547–3558(2006).
[CrossRef]

O. V. Angelsky, Yu. Ya Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D: Appl. Phys. 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, G. V. Demianovsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotisues for diagnosing pathological changes,” J Biomed. Opt. 9, 679–690 (2004).
[CrossRef]

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in bio tissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

van Gemert, M. J.

Vanchulyak, O. Ya.

O. V. Dubolazov, A. G. Ushenko, V. T. Bachynsky, A. P. Peresunko, and O. Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals,” Adv. Opt. Technol. 2010, 162832 (2010).
[CrossRef]

Vladychenko, K.

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

Wang, L.-H.

X. Wang, L.-H. Wang, C.-W. Sun, and C. C. Yang, “Polarized light propagation through the scattering media: time-resolved Monte Carlo and experiments,” J. Biomed. Opt. 8, 608–617 (2003).
[CrossRef]

X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

X. Wang, G. Yao, and L.-H. Wang, “Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002).
[CrossRef]

Wang, X.

X. Wang, L.-H. Wang, C.-W. Sun, and C. C. Yang, “Polarized light propagation through the scattering media: time-resolved Monte Carlo and experiments,” J. Biomed. Opt. 8, 608–617 (2003).
[CrossRef]

X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

X. Wang, G. Yao, and L.-H. Wang, “Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002).
[CrossRef]

Welch, A. J.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Yang, C. C.

X. Wang, L.-H. Wang, C.-W. Sun, and C. C. Yang, “Polarized light propagation through the scattering media: time-resolved Monte Carlo and experiments,” J. Biomed. Opt. 8, 608–617 (2003).
[CrossRef]

Yao, G.

Yermolenko, S.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Zimnyakov, D.

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

Adv. Opt. Technol. (2)

G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).

O. V. Dubolazov, A. G. Ushenko, V. T. Bachynsky, A. P. Peresunko, and O. Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals,” Adv. Opt. Technol. 2010, 162832 (2010).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J Biomed. Opt. (1)

O. V. Angelsky, G. V. Demianovsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotisues for diagnosing pathological changes,” J Biomed. Opt. 9, 679–690 (2004).
[CrossRef]

J. Biomed. Opt. (5)

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005).
[CrossRef]

X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

X. Wang, L.-H. Wang, C.-W. Sun, and C. C. Yang, “Polarized light propagation through the scattering media: time-resolved Monte Carlo and experiments,” J. Biomed. Opt. 8, 608–617 (2003).
[CrossRef]

J. Phys. D: Appl. Phys. (2)

O. V. Angelsky, Yu. Ya Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D: Appl. Phys. 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D: Appl. Phys. 39, 3547–3558(2006).
[CrossRef]

Laser Phys. (1)

O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in bio tissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).

Opt. Lett. (3)

Opt. Spectrosc. (6)

G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000).
[CrossRef]

A.G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002).
[CrossRef]

Optica Applicata (1)

R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).

Proc. SPIE (5)

Yu. F. Marchuk, A. G. Ushenko, A. I. Fediv, and Yu. F. Marchuk, “Singular structure of polarization images of bile secret in diagnostics of human physiological state,” Proc. SPIE 7368, 73681S (2009).

S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009).
[CrossRef]

A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008).
[CrossRef]

S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008).
[CrossRef]

V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997).
[CrossRef]

Other (7)

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).

V. Tuchin, ed., Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science (Kluwer Academic, 2004).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

D. H. Goldstein, Polarized Light (Marcel Dekker, 2003).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Optical diagram of laser Fourier polarimeter, where 1—He-Ne laser, 2—collimator; 3—stationary quarter-wave plate; 4, 8—polarizer and analyzer, respectively; 5, 9—mechanically movable quarter-wave plates; 6—object of investigation; 7—polarization microobjective; 10—CCD camera; 11—personal computer.

Fig. 2.
Fig. 2.

Parameters of Fourier phase of image representation of the polycrystalline component of human bile from group 1 and group 2. Explanations are in the text.

Fig. 3.
Fig. 3.

Autocorrelation (c) and logarithmic dependence of the power spectrum (d) for the distribution of wavelet-coefficients (a) on scale a=2 MHAT functions (b) of the Fourier phase of the way of imaging the polycrystalline components of human bile from group 1 and group 2. Explanations are in the text.

Tables (2)

Tables Icon

Table 1. Statistical, Correlation, And Self-Similar Structure Of Phase Of Fourier Images Of Bile

Tables Icon

Table 2. Parameters Of Statistical, Correlation, And Self-Similar Structure Of Distributions Wa=2;b=1÷m(Φ)

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

(ExEy)=(1iδcosρ(cosρ+θsinρ)θiδsinρ(cosρ+θsinρ)).
α(ρ,δ,θ)=0.5arctan(ExEy*EyEx*ExEx*EyEy*);
β(ρ,δ,θ)=0.5arcsin(i(EyEx*ExEy*)ExEx*+EyEy*).
Ux(Xλf,Yλf)Ux(ν,μ)=1iλfexp[i2π(xν+yμ)]dxdy1λfδcosρ(cosρ+θsinρ)exp[i2π(xν+yμ)]dxdy;
Uy(Xλf,Yλf)Uy(ν,μ)=1iλfθexp[i2π(xν+yμ)]dxdy1λfδcosρ(cosρ+θsinρ)exp[i2π(xν+yμ)]dxdy.
Φ(ν,μ)=arctanImU(ν,μ)ReU(ν,μ)=arctanUx(ν,μ)+Uy(ν,μ)sinφ(ν,μ)Ux(ν,μ)+Uy(ν,μ)cosφ(ν,μ).
S1=I0+I90;S2=I0I90;S3=I45I135;S4=II.
{α(ν,μ)=0,5arctan[S3(ν,μ)S2(ν,μ)];β(ν,μ)=0,5arcsin[S4(ν,μ)S1(ν,μ)].
Φ(ν,μ)=arctanI0(ν,μ)+I90(ν,μ)sinφ(ν,μ)I0(ν,μ)+I90(ν,μ)cosφ(ν,μ).
Ψ(x)=d2dx2ex2/2=(1x2)ex2/2.
Wa,b=[W(amin,b1)··W(amin,b=m)········W(amax,b1)··W(amax,b=m)].
W¯a,b=[W¯(amin,b1)=j=1mWj(amin,b1)m;··W¯(amin,b=m)=j=1mWj(amin,b1=m)m;········W¯(amax,b1)=j=1mWj(amax,b1)m;··W¯(amax,b=m)=j=1mWj(amax,b1=m)m.].

Metrics