Abstract

We report on a 1.645 μm single longitudinal mode Er:YAG laser that was resonantly pumped by a 1.532 μm fiber laser, using intracavity etalons to generate single longitudinal mode operation. We obtained 0.749 W single longitudinal mode output power at 1.645 μm from an Er:YAG laser with two intracavity etalons. The M2-factors of the Er:YAG laser were 1.041 and 1.068 in the x and y directions, respectively.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE 5791, 167–174 (2005).
    [CrossRef]
  2. S. M. Hannon, “Wind resource assessment using long range pulsed Doppler lidar,” in 15th Coherent Laser Radar Conference (Curran Associates, 2009), pp. 59–62.
  3. K. O. White and W. R. Watkins, “Erbium laser as a remote sensor of methane,” Appl. Opt. 14, 2812–2813 (1975).
  4. R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulse width Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
    [CrossRef]
  5. J. W. Kim, J. K. Sahu, and W. A. Clarkson, “Efficient single-axial-mode operation of an Er:YAG ring laser at 1645 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, CLEO/QELS (IEEE, 2008), pp. 167–174.
  6. I. S. Moskalev, V. V. Fedorov, V. P. Gapontsev, D. V. Gapontsev, N. S. Platonov, and S. B. Mirov, “Highly efficient, narrow-linewidth, and single frequency actively and passively Q-switched fiber-bulk hybrid Er:YAG lasers operating at 1645 nm,” Opt. Express 16, 19427–19433 (2008).
    [CrossRef]
  7. N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
    [CrossRef]

2010 (1)

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

2008 (1)

2007 (1)

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulse width Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[CrossRef]

2005 (1)

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE 5791, 167–174 (2005).
[CrossRef]

1975 (1)

Chang, N. W.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

Clarkson, W. A.

J. W. Kim, J. K. Sahu, and W. A. Clarkson, “Efficient single-axial-mode operation of an Er:YAG ring laser at 1645 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, CLEO/QELS (IEEE, 2008), pp. 167–174.

Fedorov, V. V.

Gapontsev, D. V.

Gapontsev, V. P.

Garvin, C. G.

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulse width Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[CrossRef]

Gatt, P.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE 5791, 167–174 (2005).
[CrossRef]

Hannon, S. M.

S. M. Hannon, “Wind resource assessment using long range pulsed Doppler lidar,” in 15th Coherent Laser Radar Conference (Curran Associates, 2009), pp. 59–62.

Hartman, R.

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulse width Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[CrossRef]

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE 5791, 167–174 (2005).
[CrossRef]

Henderson, S. W.

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulse width Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[CrossRef]

Hosken, D. J.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

Kim, J. W.

J. W. Kim, J. K. Sahu, and W. A. Clarkson, “Efficient single-axial-mode operation of an Er:YAG ring laser at 1645 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, CLEO/QELS (IEEE, 2008), pp. 167–174.

Malm, A. I. R.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE 5791, 167–174 (2005).
[CrossRef]

Mirov, S. B.

Moskalev, I. S.

Munch, J.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

Ottaway, D.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

Platonov, N. S.

Sahu, J. K.

J. W. Kim, J. K. Sahu, and W. A. Clarkson, “Efficient single-axial-mode operation of an Er:YAG ring laser at 1645 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, CLEO/QELS (IEEE, 2008), pp. 167–174.

Schneider, E. A.

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulse width Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[CrossRef]

Stoneman, R. C.

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulse width Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[CrossRef]

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE 5791, 167–174 (2005).
[CrossRef]

Veitch, P. J.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

Watkins, W. R.

White, K. O.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulse width Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[CrossRef]

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, “Coherent laser radar using eyesafe YAG laser transmitters,” Proc. SPIE 5791, 167–174 (2005).
[CrossRef]

Other (2)

S. M. Hannon, “Wind resource assessment using long range pulsed Doppler lidar,” in 15th Coherent Laser Radar Conference (Curran Associates, 2009), pp. 59–62.

J. W. Kim, J. K. Sahu, and W. A. Clarkson, “Efficient single-axial-mode operation of an Er:YAG ring laser at 1645 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, CLEO/QELS (IEEE, 2008), pp. 167–174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the resonantly pumped 1.645 μm Er:YAG laser with one intracavity etalon.

Fig. 2.
Fig. 2.

Output power versus input power of the Er:YAG laser with one intracavity etalon.

Fig. 3.
Fig. 3.

Spectrum of the single longitudinal mode Er:YAG laser observed with a F-P scanning interferometer with an FSR of 2.44 GHz.

Fig. 4.
Fig. 4.

Optical scheme of the Er:YAG laser linear cavity with two etalons.

Fig. 5.
Fig. 5.

Output power versus input power for the Er:YAG laser with two intracavity etalons (T=22%).

Fig. 6.
Fig. 6.

Propagation of the beam radii and beam profile of the single longitudinal mode Er:YAG laser.

Metrics