Abstract

We investigate the tracking ability of an optical phase conjugator using a commercial CCD array and a projector LCD panel. This system allows one to use two separate laser oscillators for capturing interference patterns and generating phase conjugate light. Since a long coherence length is not required for the latter part, amplification of the phase conjugate light can be easily attained by using a laser oscillator for high-power applications such as machining. The wavelengths of the two laser oscillators can be independently chosen. For our experimental configuration an amplification factor of 7.8×104 is theoretically possible. Also, a formula for the maximum tracking range is derived. The proposed system is particularly suitable for power transmission by light.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. B. Markov and A. Khizhnyak, “Adaptive laser system for active remote object tracking,” in Aerospace Conference Proceedings (IEEE, 2002), Vol. 3, pp. 1445–1456.
  2. R. J. Grasso and E. A. Stappaerts, “Linear phase conjugation for atmospheric aberration compensation,” Proc. SPIE 3219, 124–132 (1998).
  3. H. Nakajima and R. Frey, “Intracavity nearly degenerate four-wave mixing in a (GaAl) as semiconductor laser,” Appl. Phys. Lett. 47, 769–771 (1985).
    [CrossRef]
  4. J. Sakai, Phase Conjugate Optics (McGraw-Hill, 1992).
  5. J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980).
    [CrossRef]
  6. A. Brignon and J.-P. Huignard, “Overview of phase conjugation,” in Phase Conjugate Laser OpticsA. Brignon and J.-P. Huignard, eds. (Wiley-Interscience, 2003), pp. 1–15.
  7. N. F. Andreev, V. I. Despalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” LETP Lett. 32, 625–629 (1980).
  8. O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, and M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).
  9. J. Reintjes, B. L. Wexler, N. Djeu, and J. L. Walsh, “Degenerate frequency mixing in saturable amplifiers,” J. Phys. Colloq. 44C2, 27–37 (1983).
  10. A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119, 171–177 (1995).
    [CrossRef]
  11. A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).
  12. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).
  13. I. Yamaguchi, “Image formation and measurement of surface shape and deformation by phase-shifting digital holography,” Proc. SPIE 5642, 66–77 (2005).
  14. O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
    [CrossRef]
  15. E. Marom and U. Efron, “Phase conjugation of low-power optical beams using liquid-crystal light valves,” Opt. Lett. 12, 504–506 (1987).
    [CrossRef]
  16. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, “Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14, 8013–18 (2006).
  17. F. Bai and C. Rao, “Experimental validation of closed-loop adaptive optics based on a self-referencing interferometer wavefront sensor and a liquid-crystal spatial light modulator,” Opt. Commun. 283, 2782–2786 (2010).
    [CrossRef]
  18. T. Baumbach, W. Osten, C. V. Kopylow, and W. Jüptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006).
    [CrossRef]
  19. U. Schnars and W. Juptner, Digital Holograph : Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  20. N. Yin, L. Li, H. Wang, F. Guo, and W. Wang, “Experimental research of CCD/LCD in holography,” Proc. SPIE 6832, 68322B (2007).
  21. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736–738 (2006).
    [CrossRef]
  22. T. Kushida, Optical Physics (Kyoritsu Shuppan, 1983).
  23. H. Katsuma and K. Sato, “Electronic display system using LCD, laser diode, and holography camera,” Proc. SPIE 1914, 212–218 (1993).
    [CrossRef]
  24. S. Nakazaki, K. Sato, M. Morimoto, and K. Fujii, “Real-time color holography with high-resolution reflective LCD panels,” Proc. SPIE 5290, 50–57 (2004).
  25. Hamamatsu, “LCOS-SLM X10468 series Technical Information,” http://sales.hamamatsu.com/assets/pdf/parts_X/x10468_series_kacc9002e02.pdf .
  26. NASA homepage, “From gas-powered to laser-powered! NASA research team successfully flies first laser-powered aircraft,” http://www.nasa.gov/home/index.html .

2010 (2)

F. Bai and C. Rao, “Experimental validation of closed-loop adaptive optics based on a self-referencing interferometer wavefront sensor and a liquid-crystal spatial light modulator,” Opt. Commun. 283, 2782–2786 (2010).
[CrossRef]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010).

2007 (2)

N. Yin, L. Li, H. Wang, F. Guo, and W. Wang, “Experimental research of CCD/LCD in holography,” Proc. SPIE 6832, 68322B (2007).

A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).

2006 (3)

2005 (1)

I. Yamaguchi, “Image formation and measurement of surface shape and deformation by phase-shifting digital holography,” Proc. SPIE 5642, 66–77 (2005).

2004 (1)

S. Nakazaki, K. Sato, M. Morimoto, and K. Fujii, “Real-time color holography with high-resolution reflective LCD panels,” Proc. SPIE 5290, 50–57 (2004).

1999 (1)

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, and M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).

1998 (1)

R. J. Grasso and E. A. Stappaerts, “Linear phase conjugation for atmospheric aberration compensation,” Proc. SPIE 3219, 124–132 (1998).

1995 (1)

A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119, 171–177 (1995).
[CrossRef]

1993 (1)

H. Katsuma and K. Sato, “Electronic display system using LCD, laser diode, and holography camera,” Proc. SPIE 1914, 212–218 (1993).
[CrossRef]

1987 (1)

1985 (1)

H. Nakajima and R. Frey, “Intracavity nearly degenerate four-wave mixing in a (GaAl) as semiconductor laser,” Appl. Phys. Lett. 47, 769–771 (1985).
[CrossRef]

1983 (1)

J. Reintjes, B. L. Wexler, N. Djeu, and J. L. Walsh, “Degenerate frequency mixing in saturable amplifiers,” J. Phys. Colloq. 44C2, 27–37 (1983).

1981 (1)

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

1980 (2)

N. F. Andreev, V. I. Despalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” LETP Lett. 32, 625–629 (1980).

J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980).
[CrossRef]

Andreev, N. F.

N. F. Andreev, V. I. Despalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” LETP Lett. 32, 625–629 (1980).

Bai, F.

F. Bai and C. Rao, “Experimental validation of closed-loop adaptive optics based on a self-referencing interferometer wavefront sensor and a liquid-crystal spatial light modulator,” Opt. Commun. 283, 2782–2786 (2010).
[CrossRef]

Baumbach, T.

Berenberg, V. A.

A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).

Brignon, A.

A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119, 171–177 (1995).
[CrossRef]

A. Brignon and J.-P. Huignard, “Overview of phase conjugation,” in Phase Conjugate Laser OpticsA. Brignon and J.-P. Huignard, eds. (Wiley-Interscience, 2003), pp. 1–15.

Cao, Z.

Crofts, G. J.

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, and M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).

Cui, M.

Damzen, M. J.

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, and M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).

Despalov, V. I.

N. F. Andreev, V. I. Despalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” LETP Lett. 32, 625–629 (1980).

Djeu, N.

J. Reintjes, B. L. Wexler, N. Djeu, and J. L. Walsh, “Degenerate frequency mixing in saturable amplifiers,” J. Phys. Colloq. 44C2, 27–37 (1983).

Efron, U.

Feinberg, J.

Freigang, N. N.

A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).

Frey, R.

H. Nakajima and R. Frey, “Intracavity nearly degenerate four-wave mixing in a (GaAl) as semiconductor laser,” Appl. Phys. Lett. 47, 769–771 (1985).
[CrossRef]

Fujii, K.

S. Nakazaki, K. Sato, M. Morimoto, and K. Fujii, “Real-time color holography with high-resolution reflective LCD panels,” Proc. SPIE 5290, 50–57 (2004).

Garibyan, O. V.

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

Grasso, R. J.

R. J. Grasso and E. A. Stappaerts, “Linear phase conjugation for atmospheric aberration compensation,” Proc. SPIE 3219, 124–132 (1998).

Guo, F.

N. Yin, L. Li, H. Wang, F. Guo, and W. Wang, “Experimental research of CCD/LCD in holography,” Proc. SPIE 6832, 68322B (2007).

Hellwarth, R. W.

Helmcke, J.

Hu, L.

Huignard, J.-P.

A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119, 171–177 (1995).
[CrossRef]

A. Brignon and J.-P. Huignard, “Overview of phase conjugation,” in Phase Conjugate Laser OpticsA. Brignon and J.-P. Huignard, eds. (Wiley-Interscience, 2003), pp. 1–15.

Ivanova, N. L.

A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).

Juptner, W.

U. Schnars and W. Juptner, Digital Holograph : Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Jüptner, W.

Katsuma, H.

H. Katsuma and K. Sato, “Electronic display system using LCD, laser diode, and holography camera,” Proc. SPIE 1914, 212–218 (1993).
[CrossRef]

Khizhnyak, A.

V. B. Markov and A. Khizhnyak, “Adaptive laser system for active remote object tracking,” in Aerospace Conference Proceedings (IEEE, 2002), Vol. 3, pp. 1445–1456.

Kiselev, A. M.

N. F. Andreev, V. I. Despalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” LETP Lett. 32, 625–629 (1980).

Kompanets, I. N.

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

Kopylow, C. V.

Kushida, T.

T. Kushida, Optical Physics (Kyoritsu Shuppan, 1983).

Leshchev, A. A.

A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).

Li, D.

Li, L.

N. Yin, L. Li, H. Wang, F. Guo, and W. Wang, “Experimental research of CCD/LCD in holography,” Proc. SPIE 6832, 68322B (2007).

Markov, V. B.

V. B. Markov and A. Khizhnyak, “Adaptive laser system for active remote object tracking,” in Aerospace Conference Proceedings (IEEE, 2002), Vol. 3, pp. 1445–1456.

Marom, E.

Matveev, A. Z.

N. F. Andreev, V. I. Despalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” LETP Lett. 32, 625–629 (1980).

Mensing, F.

Morimoto, M.

S. Nakazaki, K. Sato, M. Morimoto, and K. Fujii, “Real-time color holography with high-resolution reflective LCD panels,” Proc. SPIE 5290, 50–57 (2004).

Mu, Q.

Nakajima, H.

H. Nakajima and R. Frey, “Intracavity nearly degenerate four-wave mixing in a (GaAl) as semiconductor laser,” Appl. Phys. Lett. 47, 769–771 (1985).
[CrossRef]

Nakazaki, S.

S. Nakazaki, K. Sato, M. Morimoto, and K. Fujii, “Real-time color holography with high-resolution reflective LCD panels,” Proc. SPIE 5290, 50–57 (2004).

Osten, W.

Parfyonov, A. V.

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

Pasmanik, G. A.

N. F. Andreev, V. I. Despalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” LETP Lett. 32, 625–629 (1980).

Petrushin, Y. A.

A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).

Pilipetsky, N. F.

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

Rao, C.

F. Bai and C. Rao, “Experimental validation of closed-loop adaptive optics based on a self-referencing interferometer wavefront sensor and a liquid-crystal spatial light modulator,” Opt. Commun. 283, 2782–2786 (2010).
[CrossRef]

Reintjes, J.

J. Reintjes, B. L. Wexler, N. Djeu, and J. L. Walsh, “Degenerate frequency mixing in saturable amplifiers,” J. Phys. Colloq. 44C2, 27–37 (1983).

Sakai, J.

J. Sakai, Phase Conjugate Optics (McGraw-Hill, 1992).

Sato, K.

S. Nakazaki, K. Sato, M. Morimoto, and K. Fujii, “Real-time color holography with high-resolution reflective LCD panels,” Proc. SPIE 5290, 50–57 (2004).

H. Katsuma and K. Sato, “Electronic display system using LCD, laser diode, and holography camera,” Proc. SPIE 1914, 212–218 (1993).
[CrossRef]

Schnars, U.

U. Schnars and W. Juptner, Digital Holograph : Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Semenov, P. M.

A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).

Shilov, A. A.

N. F. Andreev, V. I. Despalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” LETP Lett. 32, 625–629 (1980).

Shkunov, V. V.

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

Stappaerts, E. A.

R. J. Grasso and E. A. Stappaerts, “Linear phase conjugation for atmospheric aberration compensation,” Proc. SPIE 3219, 124–132 (1998).

Sterr, U.

Stoehr, H.

Sudarkin, A. N.

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

Sukhov, A. V.

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

Syed, K. S.

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, and M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).

Tabiryan, N. V.

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

Udaiyan, D.

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, and M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).

Vasil’ev, M. V.

A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).

Vasiliev, A. A.

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

Venediktov, Yu. V.

A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).

Walsh, J. L.

J. Reintjes, B. L. Wexler, N. Djeu, and J. L. Walsh, “Degenerate frequency mixing in saturable amplifiers,” J. Phys. Colloq. 44C2, 27–37 (1983).

Wang, H.

N. Yin, L. Li, H. Wang, F. Guo, and W. Wang, “Experimental research of CCD/LCD in holography,” Proc. SPIE 6832, 68322B (2007).

Wang, W.

N. Yin, L. Li, H. Wang, F. Guo, and W. Wang, “Experimental research of CCD/LCD in holography,” Proc. SPIE 6832, 68322B (2007).

Wexler, B. L.

J. Reintjes, B. L. Wexler, N. Djeu, and J. L. Walsh, “Degenerate frequency mixing in saturable amplifiers,” J. Phys. Colloq. 44C2, 27–37 (1983).

Wittler, O.

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, and M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).

Xuan, L.

Yamaguchi, I.

I. Yamaguchi, “Image formation and measurement of surface shape and deformation by phase-shifting digital holography,” Proc. SPIE 5642, 66–77 (2005).

Yang, C.

Yin, N.

N. Yin, L. Li, H. Wang, F. Guo, and W. Wang, “Experimental research of CCD/LCD in holography,” Proc. SPIE 6832, 68322B (2007).

Zel’dovich, B. Y.

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Nakajima and R. Frey, “Intracavity nearly degenerate four-wave mixing in a (GaAl) as semiconductor laser,” Appl. Phys. Lett. 47, 769–771 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

O. Wittler, D. Udaiyan, G. J. Crofts, K. S. Syed, and M. J. Damzen, “Characterization of a distortion-corrected Nd:YAG laser with a self-conjugating loop geometry,” IEEE J. Quantum Electron. 35, 656–664 (1999).

J. Phys. Colloq. (1)

J. Reintjes, B. L. Wexler, N. Djeu, and J. L. Walsh, “Degenerate frequency mixing in saturable amplifiers,” J. Phys. Colloq. 44C2, 27–37 (1983).

LETP Lett. (1)

N. F. Andreev, V. I. Despalov, A. M. Kiselev, A. Z. Matveev, G. A. Pasmanik, and A. A. Shilov, “Wave-front inversion of weak optical signals with a large reflection coefficient,” LETP Lett. 32, 625–629 (1980).

Opt. Commun. (3)

O. V. Garibyan, I. N. Kompanets, A. V. Parfyonov, N. F. Pilipetsky, V. V. Shkunov, A. N. Sudarkin, A. V. Sukhov, N. V. Tabiryan, A. A. Vasiliev, and B. Y. Zel’dovich, “Optical phase conjugation by microwatt power of reference waves via liquid crystal light valve,” Opt. Commun. 38, 67–70 (1981).
[CrossRef]

F. Bai and C. Rao, “Experimental validation of closed-loop adaptive optics based on a self-referencing interferometer wavefront sensor and a liquid-crystal spatial light modulator,” Opt. Commun. 283, 2782–2786 (2010).
[CrossRef]

A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119, 171–177 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (5)

N. Yin, L. Li, H. Wang, F. Guo, and W. Wang, “Experimental research of CCD/LCD in holography,” Proc. SPIE 6832, 68322B (2007).

R. J. Grasso and E. A. Stappaerts, “Linear phase conjugation for atmospheric aberration compensation,” Proc. SPIE 3219, 124–132 (1998).

I. Yamaguchi, “Image formation and measurement of surface shape and deformation by phase-shifting digital holography,” Proc. SPIE 5642, 66–77 (2005).

H. Katsuma and K. Sato, “Electronic display system using LCD, laser diode, and holography camera,” Proc. SPIE 1914, 212–218 (1993).
[CrossRef]

S. Nakazaki, K. Sato, M. Morimoto, and K. Fujii, “Real-time color holography with high-resolution reflective LCD panels,” Proc. SPIE 5290, 50–57 (2004).

Quantum Electron. (1)

A. A. Leshchev, V. A. Berenberg, M. V. Vasil’ev, Yu. V. Venediktov, N. L. Ivanova, Y. A. Petrushin, P. M. Semenov, and N. N. Freigang, “Phase conjugation of low-intensity laser radiation in a scheme with a thin dynamic hologram and TV transmission of interferometric information,” Quantum Electron. 37, 716–719 (2007).

Other (7)

V. B. Markov and A. Khizhnyak, “Adaptive laser system for active remote object tracking,” in Aerospace Conference Proceedings (IEEE, 2002), Vol. 3, pp. 1445–1456.

J. Sakai, Phase Conjugate Optics (McGraw-Hill, 1992).

A. Brignon and J.-P. Huignard, “Overview of phase conjugation,” in Phase Conjugate Laser OpticsA. Brignon and J.-P. Huignard, eds. (Wiley-Interscience, 2003), pp. 1–15.

Hamamatsu, “LCOS-SLM X10468 series Technical Information,” http://sales.hamamatsu.com/assets/pdf/parts_X/x10468_series_kacc9002e02.pdf .

NASA homepage, “From gas-powered to laser-powered! NASA research team successfully flies first laser-powered aircraft,” http://www.nasa.gov/home/index.html .

U. Schnars and W. Juptner, Digital Holograph : Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

T. Kushida, Optical Physics (Kyoritsu Shuppan, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Generation process of phase conjugate light. The first step is to capture the hologram by a CCD. Then, the hologram is displayed on an LCD and illuminated by the light EC from behind. The transmitted light ED propagates on the incident light path to the target.

Fig. 2.
Fig. 2.

Two-dimensional coordinate system showing the reference and the object beams interfering at the surface of the CCD. When a light source is placed at P, the interference fringe spacing becomes smallest at the farther edge of the CCD, which should be greater than the length of two neighboring pixels for high-resolution recording.

Fig. 3.
Fig. 3.

Comparison between the Fresnel and the plane wave approximations with three different angles of the reference light. The discrepancy between the two approximations stands out for <2.

Fig. 4.
Fig. 4.

Simulated interference patterns for the case of using converging reference light. (a) θo=0°, R=60mm, (b) θo=3°, R=60mm, (c) θo=0°, R=45mm, (d) θo=3°, R=45mm.

Fig. 5.
Fig. 5.

Experimental setup.

Fig. 6.
Fig. 6.

Interference pattern (a) pattern recorded by CCD and (b) an FFT-processed image.

Fig. 7.
Fig. 7.

Picture of the LCD module. The LCD panel for red light was set between two polarization plates in the middle of this picture. The large circuit is a rewired LCD projector, which is connected to the PC serial port. An enlarged picture of the LCD panel is also shown above.

Fig. 8.
Fig. 8.

(a) Original test image composed of 16 different gray levels. (b). Photo of the test image displayed on the LCD.

Fig. 9.
Fig. 9.

Intensity comparison of light passing through the red and the blue LCD panels by displaying images of various gray levels (light transmission rates).

Fig. 10.
Fig. 10.

Beam diameter of phase conjugate light at the 1/e2 width. Each curve represents different distances of the imaginary target from the CCD. Curves starting from the left are 71.5 cm, 75.8 cm, 80.8 cm, 85.8 cm, 90.8 cm, and 95.8 cm.

Fig. 11.
Fig. 11.

Position of the focus obtained by reading the smallest values in Fig. 10. Both the imaginary target and the focus moved the same distances in the direction of the CCD normal.

Fig. 12.
Fig. 12.

Focus displacement in a direction perpendicular to the CCD normal.

Fig. 13.
Fig. 13.

(a) Output light observed at the target position when an interference pattern was displayed. A focus appeared which indicates that the PCL has undone the phase profile of the lens. (b) Unmodulated light observed at the target position. No focus appeared.

Fig. 14.
Fig. 14.

Illustration of the zero-order and the phase conjugate light rays. Putting a lens of F=10cm makes the focus of the zero-order light be 10 cm behind the lens. Positioning the toner dot can block the zero-order light at the focus.

Fig. 15.
Fig. 15.

(a) Image of a focus with the spatial filter. Zero-order diffraction light is filtered, and only the first-order diffracted light appears. (b) An image of the focus without the spatial filter. Blurred light spreading over a wide area is the zero-order diffraction light.

Fig. 16.
Fig. 16.

Position and distance between an object (ISS) and an interference pattern.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I|A|2+|B|2+2R[AB*exp[ik(xsinθo+zcosθo+xsinθRzcosθR)]]=IA+IB+2IAIBcos[k(xsinθo+zcosθo+xsinθRzcosθR)],
fx=12πx[k(xsinθo+zcosθo+xsinθRzcosθR)]=1λ(sinθo+sinθR).
θo=arcsin(λ2ΔxsinθR).
Xmax=zotan[arcsin(λ2ΔxsinθR)]L2.
{Xmax=(λzoΔxL)/8forsinθR3X2zoXmax=λzo2ΔxL2forθR=0.

Metrics