Abstract

The effect of nanosecond laser pre-irradiation on the femtosecond laser-induced damage behaviors of 800 nm 0° AOI Ta2O5/SiO2 high reflectors fabricated by e-beam evaporation was explored. Laser pre-irradiation was carried out by Raster-scanning with scanning mode of 1-on-1 and scanning velocities timed such that there was a beam overlap at 70% of the peak fluence, utilizing 5 Hz 1064 nm 12 ns Nd:YAG fundamental lasers. Femtosecond laser damage was investigated by 1 kHz 800 nm 135 fs Ti: sapphire laser system with 1-on-1 mode test. The results indicated that nanosecond laser pre-irradiation did not promote the femtosecond laser-induced damage threshold of reflectors. Instead, the thresholds of all the samples with various fluence steps for pre-irradiation were reduced by about 20%. Furthermore, the damage morphologies were analyzed by optical microscope, SEM and AFM, which displayed deterministic field induced breakdown characteristics. To explain these phenomena, a theoretical model including photoionization, avalanche ionization, and decays of electrons was built to simulate the evolution of electron density in the conduction band. Field ionization mechanism was considered to dominate the femtosecond laser damage process, while the electronic defects induced by nanosecond laser pre-irradiation accelerated the femtosecond laser damage evolution.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987).
    [CrossRef]
  2. S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416–418 (1982).
    [CrossRef]
  3. J. W. Arenberg and M. E. Frink, “On the role of water in the laser conditioning effect,” Proc. SPIE 756, 430–439 (1988).
  4. A. B. Papendrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
  5. C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales,“Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1989).
  6. Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).
  7. Y. Zhao, T. Wang, D. Zhang, S. Fan, J. Shao, and Z. Fan, “Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,” Appl. Surf. Sci. 239, 171–175 (2005).
    [CrossRef]
  8. W. T. Beauchamp, B. P. Hichawa, and M. H. Innus, “Systematic design approach leads to better optical coatings,” Laser Focus/Electra-Optics 24, 109–112 (1988).
  9. R. N. Schwartz, M. D. Gark, W. Thamulitrat, and L. Kevan, “Electron paramagnetic resonance studies of intrinsic bonding defects and impurities in SiO2 thin solid films,” Mater. Res. Soc. Symp. Proc. 61, 359 (1986).
  10. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
  11. L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2−SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007).
    [CrossRef]
  12. X. Jing, J. Shao, J. Zhang, Y. Jin, H. He, and Z. Fan, “Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays,” Opt. Express 17, 24137–24152 (2009).
    [CrossRef]
  13. M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209 (2008).
  14. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
    [CrossRef]
  15. Y. Wang, H. He, Y. Zhao, Y. Shan, D. Li, and C. Wei, “Single- and multi-shot laser-induced damage of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9, 023013 (2011).
  16. ISO 11254-1, Laser and laser-related equipment-determination of laser-induced damage threshold of optical surfaces-Part 1: 1-on-1 test, (2000).
  17. L. M. Sheehan, M. R. Kozlowski, F. Rainer, and M. C. Staggs, “Large area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).
  18. S. Chen, Y. Zhao, P. Gao, D. Li, H. He, J. Shao, and Z. Fan, “Influence of nanosecond laser surface modification on the femtosecond laser-induced damage of Ta2O5/SiO2 dielectric film,” Chin. J. Lasers 38, s103002 (2011).
  19. S. Chen, Y. Zhao, H. He, and J. Shao, “Effect of standing wave-field distribution on the femtosecond laser-induced damage of HfO2/SiO2 mirror coating,” Chin. Opt. Lett. 9, 083101 (2011).
    [CrossRef]
  20. J. M. Liu, “Sample technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
    [CrossRef]
  21. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon—modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
    [CrossRef]
  22. L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
    [CrossRef]
  23. K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
  24. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
    [CrossRef]
  25. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
  26. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
    [CrossRef]
  27. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  28. A. C. Tien, S. Backus, H. Kapteyn, M. Murmane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
    [CrossRef]
  29. M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).

2011 (3)

Y. Wang, H. He, Y. Zhao, Y. Shan, D. Li, and C. Wei, “Single- and multi-shot laser-induced damage of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9, 023013 (2011).

S. Chen, Y. Zhao, P. Gao, D. Li, H. He, J. Shao, and Z. Fan, “Influence of nanosecond laser surface modification on the femtosecond laser-induced damage of Ta2O5/SiO2 dielectric film,” Chin. J. Lasers 38, s103002 (2011).

S. Chen, Y. Zhao, H. He, and J. Shao, “Effect of standing wave-field distribution on the femtosecond laser-induced damage of HfO2/SiO2 mirror coating,” Chin. Opt. Lett. 9, 083101 (2011).
[CrossRef]

2010 (2)

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[CrossRef]

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

2009 (2)

2008 (1)

M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209 (2008).

2007 (1)

2005 (2)

Y. Zhao, T. Wang, D. Zhang, S. Fan, J. Shao, and Z. Fan, “Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,” Appl. Surf. Sci. 239, 171–175 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

2004 (2)

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).

Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).

2002 (2)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon—modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

2001 (1)

A. B. Papendrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).

1999 (1)

A. C. Tien, S. Backus, H. Kapteyn, M. Murmane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).

1994 (1)

L. M. Sheehan, M. R. Kozlowski, F. Rainer, and M. C. Staggs, “Large area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).

1991 (1)

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).

1989 (1)

C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales,“Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1989).

1988 (2)

J. W. Arenberg and M. E. Frink, “On the role of water in the laser conditioning effect,” Proc. SPIE 756, 430–439 (1988).

W. T. Beauchamp, B. P. Hichawa, and M. H. Innus, “Systematic design approach leads to better optical coatings,” Laser Focus/Electra-Optics 24, 109–112 (1988).

1987 (1)

M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987).
[CrossRef]

1986 (1)

R. N. Schwartz, M. D. Gark, W. Thamulitrat, and L. Kevan, “Electron paramagnetic resonance studies of intrinsic bonding defects and impurities in SiO2 thin solid films,” Mater. Res. Soc. Symp. Proc. 61, 359 (1986).

1982 (2)

S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416–418 (1982).
[CrossRef]

J. M. Liu, “Sample technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
[CrossRef]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Allen, S. D.

S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416–418 (1982).
[CrossRef]

Amotchkina, T. V.

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).

Arenberg, J. W.

J. W. Arenberg and M. E. Frink, “On the role of water in the laser conditioning effect,” Proc. SPIE 756, 430–439 (1988).

M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987).
[CrossRef]

Babb, M. T.

M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987).
[CrossRef]

Backus, S.

A. C. Tien, S. Backus, H. Kapteyn, M. Murmane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Baudach, S.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon—modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Beauchamp, W. T.

W. T. Beauchamp, B. P. Hichawa, and M. H. Innus, “Systematic design approach leads to better optical coatings,” Laser Focus/Electra-Optics 24, 109–112 (1988).

Bonse, J.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon—modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Campbell, J. H.

C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales,“Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1989).

Chen, S.

S. Chen, Y. Zhao, H. He, and J. Shao, “Effect of standing wave-field distribution on the femtosecond laser-induced damage of HfO2/SiO2 mirror coating,” Chin. Opt. Lett. 9, 083101 (2011).
[CrossRef]

S. Chen, Y. Zhao, P. Gao, D. Li, H. He, J. Shao, and Z. Fan, “Influence of nanosecond laser surface modification on the femtosecond laser-induced damage of Ta2O5/SiO2 dielectric film,” Chin. J. Lasers 38, s103002 (2011).

Chirkin, A. S.

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).

Commandré, M.

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Emmert, L. A.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[CrossRef]

M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209 (2008).

Faith, W. N.

S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416–418 (1982).
[CrossRef]

Falabella, S.

A. B. Papendrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).

Fan, S.

Y. Zhao, T. Wang, D. Zhang, S. Fan, J. Shao, and Z. Fan, “Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,” Appl. Surf. Sci. 239, 171–175 (2005).
[CrossRef]

Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).

Fan, Z.

S. Chen, Y. Zhao, P. Gao, D. Li, H. He, J. Shao, and Z. Fan, “Influence of nanosecond laser surface modification on the femtosecond laser-induced damage of Ta2O5/SiO2 dielectric film,” Chin. J. Lasers 38, s103002 (2011).

X. Jing, J. Shao, J. Zhang, Y. Jin, H. He, and Z. Fan, “Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays,” Opt. Express 17, 24137–24152 (2009).
[CrossRef]

L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2−SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007).
[CrossRef]

Y. Zhao, T. Wang, D. Zhang, S. Fan, J. Shao, and Z. Fan, “Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,” Appl. Surf. Sci. 239, 171–175 (2005).
[CrossRef]

Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Frink, M. E.

J. W. Arenberg and M. E. Frink, “On the role of water in the laser conditioning effect,” Proc. SPIE 756, 430–439 (1988).

M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987).
[CrossRef]

Gallais, L.

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Gao, P.

S. Chen, Y. Zhao, P. Gao, D. Li, H. He, J. Shao, and Z. Fan, “Influence of nanosecond laser surface modification on the femtosecond laser-induced damage of Ta2O5/SiO2 dielectric film,” Chin. J. Lasers 38, s103002 (2011).

Gao, W.

Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).

Gark, M. D.

R. N. Schwartz, M. D. Gark, W. Thamulitrat, and L. Kevan, “Electron paramagnetic resonance studies of intrinsic bonding defects and impurities in SiO2 thin solid films,” Mater. Res. Soc. Symp. Proc. 61, 359 (1986).

Gonzales, R. P.

C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales,“Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1989).

He, H.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).

Hichawa, B. P.

W. T. Beauchamp, B. P. Hichawa, and M. H. Innus, “Systematic design approach leads to better optical coatings,” Laser Focus/Electra-Optics 24, 109–112 (1988).

Huang, J.

Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).

Innus, M. H.

W. T. Beauchamp, B. P. Hichawa, and M. H. Innus, “Systematic design approach leads to better optical coatings,” Laser Focus/Electra-Optics 24, 109–112 (1988).

Jensen, L.

Jeskevic, M.

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Jin, Y.

Jing, X.

Jupé, M.

Kapteyn, H.

A. C. Tien, S. Backus, H. Kapteyn, M. Murmane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Kautek, W.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon—modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Kevan, L.

R. N. Schwartz, M. D. Gark, W. Thamulitrat, and L. Kevan, “Electron paramagnetic resonance studies of intrinsic bonding defects and impurities in SiO2 thin solid films,” Mater. Res. Soc. Symp. Proc. 61, 359 (1986).

Kozlowski, M. R.

L. M. Sheehan, M. R. Kozlowski, F. Rainer, and M. C. Staggs, “Large area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).

C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales,“Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1989).

Kruger, J.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon—modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Lenzner, M.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon—modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Li, D.

Y. Wang, H. He, Y. Zhao, Y. Shan, D. Li, and C. Wei, “Single- and multi-shot laser-induced damage of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9, 023013 (2011).

S. Chen, Y. Zhao, P. Gao, D. Li, H. He, J. Shao, and Z. Fan, “Influence of nanosecond laser surface modification on the femtosecond laser-induced damage of Ta2O5/SiO2 dielectric film,” Chin. J. Lasers 38, s103002 (2011).

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

Liu, J. M.

Loomis, G. E.

A. B. Papendrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).

Mangote, B.

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Melninkaitis, A.

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[CrossRef]

Mero, M.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[CrossRef]

M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209 (2008).

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

Mirauskas, J.

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Mordaunt, D. W.

M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987).
[CrossRef]

Morgan, A. J.

C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales,“Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1989).

Mourou, G.

A. C. Tien, S. Backus, H. Kapteyn, M. Murmane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Murmane, M.

A. C. Tien, S. Backus, H. Kapteyn, M. Murmane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Papendrew, A. B.

A. B. Papendrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).

Porteus, J. O.

S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416–418 (1982).
[CrossRef]

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Rainer, F.

L. M. Sheehan, M. R. Kozlowski, F. Rainer, and M. C. Staggs, “Large area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).

C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales,“Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1989).

Ristau, D.

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).

Rudolph, W.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[CrossRef]

M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209 (2008).

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

Schwartz, R. N.

R. N. Schwartz, M. D. Gark, W. Thamulitrat, and L. Kevan, “Electron paramagnetic resonance studies of intrinsic bonding defects and impurities in SiO2 thin solid films,” Mater. Res. Soc. Symp. Proc. 61, 359 (1986).

Seitel, S. C.

M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987).
[CrossRef]

Shan, Y.

Y. Wang, H. He, Y. Zhao, Y. Shan, D. Li, and C. Wei, “Single- and multi-shot laser-induced damage of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9, 023013 (2011).

Shang, G.

Shao, J.

S. Chen, Y. Zhao, P. Gao, D. Li, H. He, J. Shao, and Z. Fan, “Influence of nanosecond laser surface modification on the femtosecond laser-induced damage of Ta2O5/SiO2 dielectric film,” Chin. J. Lasers 38, s103002 (2011).

S. Chen, Y. Zhao, H. He, and J. Shao, “Effect of standing wave-field distribution on the femtosecond laser-induced damage of HfO2/SiO2 mirror coating,” Chin. Opt. Lett. 9, 083101 (2011).
[CrossRef]

X. Jing, J. Shao, J. Zhang, Y. Jin, H. He, and Z. Fan, “Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays,” Opt. Express 17, 24137–24152 (2009).
[CrossRef]

L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2−SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007).
[CrossRef]

Y. Zhao, T. Wang, D. Zhang, S. Fan, J. Shao, and Z. Fan, “Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,” Appl. Surf. Sci. 239, 171–175 (2005).
[CrossRef]

Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).

Sheehan, L. M.

L. M. Sheehan, M. R. Kozlowski, F. Rainer, and M. C. Staggs, “Large area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).

Sirutkaitis, V.

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[CrossRef]

Staggs, M.

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).

Staggs, M. C.

L. M. Sheehan, M. R. Kozlowski, F. Rainer, and M. C. Staggs, “Large area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).

Stathis, J. H.

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).

Stolz, C. J.

A. B. Papendrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Teppo, E. A.

M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987).
[CrossRef]

Thamulitrat, W.

R. N. Schwartz, M. D. Gark, W. Thamulitrat, and L. Kevan, “Electron paramagnetic resonance studies of intrinsic bonding defects and impurities in SiO2 thin solid films,” Mater. Res. Soc. Symp. Proc. 61, 359 (1986).

Tien, A. C.

A. C. Tien, S. Backus, H. Kapteyn, M. Murmane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Tikhonravov, A. A.

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).

Trubetskov, M.

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

Wang, C.

Wang, T.

Y. Zhao, T. Wang, D. Zhang, S. Fan, J. Shao, and Z. Fan, “Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,” Appl. Surf. Sci. 239, 171–175 (2005).
[CrossRef]

Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).

Wang, Y.

Y. Wang, H. He, Y. Zhao, Y. Shan, D. Li, and C. Wei, “Single- and multi-shot laser-induced damage of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9, 023013 (2011).

Wei, C.

Y. Wang, H. He, Y. Zhao, Y. Shan, D. Li, and C. Wei, “Single- and multi-shot laser-induced damage of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9, 023013 (2011).

Welling, H.

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).

Wolfe, C. R.

C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales,“Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1989).

Wu, Z. L.

A. B. Papendrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).

Yuan, L.

Zhang, D.

Y. Zhao, T. Wang, D. Zhang, S. Fan, J. Shao, and Z. Fan, “Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,” Appl. Surf. Sci. 239, 171–175 (2005).
[CrossRef]

Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).

Zhang, J.

Zhao, Y.

Y. Wang, H. He, Y. Zhao, Y. Shan, D. Li, and C. Wei, “Single- and multi-shot laser-induced damage of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9, 023013 (2011).

S. Chen, Y. Zhao, P. Gao, D. Li, H. He, J. Shao, and Z. Fan, “Influence of nanosecond laser surface modification on the femtosecond laser-induced damage of Ta2O5/SiO2 dielectric film,” Chin. J. Lasers 38, s103002 (2011).

S. Chen, Y. Zhao, H. He, and J. Shao, “Effect of standing wave-field distribution on the femtosecond laser-induced damage of HfO2/SiO2 mirror coating,” Chin. Opt. Lett. 9, 083101 (2011).
[CrossRef]

L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2−SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007).
[CrossRef]

Y. Zhao, T. Wang, D. Zhang, S. Fan, J. Shao, and Z. Fan, “Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,” Appl. Surf. Sci. 239, 171–175 (2005).
[CrossRef]

Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).

Appl. Phys. A (1)

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon—modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

M. E. Frink, J. W. Arenberg, D. W. Mordaunt, S. C. Seitel, M. T. Babb, and E. A. Teppo, “Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass,” Appl. Phys. Lett. 51, 415–417 (1987).
[CrossRef]

S. D. Allen, J. O. Porteus, and W. N. Faith, “Infrared laser-induced desorption of H2O and hydrocarbons from optical surfaces,” Appl. Phys. Lett. 41, 416–418 (1982).
[CrossRef]

Appl. Surf. Sci. (1)

Y. Zhao, T. Wang, D. Zhang, S. Fan, J. Shao, and Z. Fan, “Laser conditioning of ZrO2:Y2O3/SiO2 mirror coatings prepared by E-beam evaporation,” Appl. Surf. Sci. 239, 171–175 (2005).
[CrossRef]

Chin. J. Lasers (1)

S. Chen, Y. Zhao, P. Gao, D. Li, H. He, J. Shao, and Z. Fan, “Influence of nanosecond laser surface modification on the femtosecond laser-induced damage of Ta2O5/SiO2 dielectric film,” Chin. J. Lasers 38, s103002 (2011).

Chin. Opt. Lett. (2)

S. Chen, Y. Zhao, H. He, and J. Shao, “Effect of standing wave-field distribution on the femtosecond laser-induced damage of HfO2/SiO2 mirror coating,” Chin. Opt. Lett. 9, 083101 (2011).
[CrossRef]

Y. Wang, H. He, Y. Zhao, Y. Shan, D. Li, and C. Wei, “Single- and multi-shot laser-induced damage of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9, 023013 (2011).

J. Appl. Phys. (1)

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Focus/Electra-Optics (1)

W. T. Beauchamp, B. P. Hichawa, and M. H. Innus, “Systematic design approach leads to better optical coatings,” Laser Focus/Electra-Optics 24, 109–112 (1988).

Mater. Res. Soc. Symp. Proc. (1)

R. N. Schwartz, M. D. Gark, W. Thamulitrat, and L. Kevan, “Electron paramagnetic resonance studies of intrinsic bonding defects and impurities in SiO2 thin solid films,” Mater. Res. Soc. Symp. Proc. 61, 359 (1986).

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to- femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

Phys. Rev. Lett. (2)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef]

A. C. Tien, S. Backus, H. Kapteyn, M. Murmane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
[CrossRef]

Proc. SPIE (8)

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).

J. W. Arenberg and M. E. Frink, “On the role of water in the laser conditioning effect,” Proc. SPIE 756, 430–439 (1988).

A. B. Papendrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).

C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, F. Rainer, A. J. Morgan, and R. P. Gonzales,“Laser conditioning of optical thin films,” Proc. SPIE 1438, 360–375 (1989).

Y. Zhao, J. Shao, T. Wang, D. Zhang, J. Huang, S. Fan, W. Gao, and Z. Fan, “Laser conditioning of dielectric oxide mirror coatings at 1064 nm,” Proc. SPIE 5774, 599–602 (2004).

L. M. Sheehan, M. R. Kozlowski, F. Rainer, and M. C. Staggs, “Large area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).

M. Mero, L. A. Emmert, and W. Rudolph, “The role of native and photoinduced defects in the multi-pulse subpicosecond damage behavior of oxide films,” Proc. SPIE 7132, 713209 (2008).

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Other (1)

ISO 11254-1, Laser and laser-related equipment-determination of laser-induced damage threshold of optical surfaces-Part 1: 1-on-1 test, (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Measured and designed spectra of experimental Ta2O5/SiO2 reflectors.

Fig. 2.
Fig. 2.

Obtained NEFI distribution in the outer thirteen layers of Ta2O5/SiO2 reflectors. The area in dashed ellipse represents the weakest position vulnerable to damage.

Fig. 3.
Fig. 3.

Schematic diagram of nanosecond laser system.

Fig. 4.
Fig. 4.

Damage probability curve of Ta2O5/SiO2 reflector irradiating by 1064 nm, 12 ns laser with 1-on-1 mode. The dots denote the experimental data of 0% or 100% damage probability, while the squares are the experimental data of damage probability between 0% and 100%.

Fig. 5.
Fig. 5.

Three kinds of energy steps chosen for laser pre-irradiation.

Fig. 6.
Fig. 6.

Schematic diagram of Raster-scanning procedure for Ta2O5/SiO2 samples.

Fig. 7.
Fig. 7.

Schematic diagram of beam overlap at 70% of the peak fluence.

Fig. 8.
Fig. 8.

Obtained spectra of experimental Ta2O5/SiO2 reflectors before and after laser pre-irradiation.

Fig. 9.
Fig. 9.

Schematic diagram of femtosecond laser system.

Fig. 10.
Fig. 10.

LIDT results of the Ta2O5/SiO2 reflectors irradiating by single-pulse 800 nm, 135 fs laser. B0 indicates as-deposited samples while B1–B4 denote the modified samples corresponding to Fig. 5.

Fig. 11.
Fig. 11.

AFM images of typical damage morphologies of Ta2O5/SiO2 reflectors irradiating by single-pulse 800 nm, 135 fs laser with near-threshold fluence. (a) Sample B0; (b) sample B1; (c) sample B4.

Fig. 12.
Fig. 12.

SEM images of typical damage morphologies of reflectors before (a) and after (b) laser pre-irradiation. Incident laser wavelength is 800 nm, and pulse width is 135 fs. (a) Sample S0, pulse fluence is 0.52 J/0.52J/cm2; (b) sample S3, pulse fluence is 0.39 J/0.39J/cm2.

Fig. 13.
Fig. 13.

Evolution of electron density in Ta2O5/SiO2 reflector for Ta2O5 (dot-dashed line) and SiO2 (solid line) materials irradiating by a 135 fs, 800 nm laser pulse; the calculated critical electron density (dashed line) from Eq. (1) (1021cm3) is shown as the damage criterion.

Tables (1)

Tables Icon

Table 1. List of Parameters for Ta2O5 and SiO2 Used in the Theoretical Calculationa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ncr=(ε0me*ω2)/e2,
ne(t)t=WPI(I(t))+WAv(I(t)·ne(t))WRel(ne(t),t),
WPI(I(t))=2ω9π(ωme*γ11/2)3/2Q(γ,x)exp{πx+1K(γ1)E(γ1)E(γ2)},
Q(γ,x)=π2K(γ2)×n=0exp{nπK(γ1)E(γ1)E(γ2)}Φ{π2(2x+12x+n)K(γ2)E(γ2)},
x=2πEgω(1+γ2)1/2γE(11+γ2),Φ(z)=0zexp(y2z2)dy,
WAv(I(t))=σEg·I(t),
σ=e2cε0n0me*·τc1+ω2τc2,τc=16πε02[me*(0.1Eg)3]1/221/2e4n(t),

Metrics